
Algorithms for Distributed Programmable
Controllers

Boyang Zhou and Chunming Wu
Institute of Computer System Architecture

Zhejiang University
Hangzhou 310027, China

{zby,wuchunming}@zju.edu.cn

Xiaoyan Hong
Department of Computer Science

University of Alabama
AL 35487, USA
hxy@cs.ua.edu

Ming Jiang
Institute of Software and Intelligent Technology

Hangzhou Dianzi University
Hangzhou 310027, China

jmzju@163.com

Abstract—A few works on SDN (Software-Defined Networking)
like those in Onix improve programmability of the distributed
network control. The asynchronism and Byzantine issues of
the control challenge the re-configurability of the service that
is to safely program the control in atomic so as to avoid
the transient control issues like the routing loops and black
holes. We propose two important algorithms of the distributed
control to enable the programmability: (1) the reconfiguration
primitive allows the network control of the services being able to
safely react to an external event; and (2) the reuse primitive
allows the control states of a service being accessible for all
services. We give concepts and algorithms of two primitives. In
addition, we provide the concrete cases of the current approaches
for ICN (Information-Centric Networking) and CDN (Content
Distribution Networks) for quests of the reconfigurability and
programmability. Then, we evaluate the performance of ICN in
both simulation and the PlanetLab testbed. The evaluation results
show that the layer improves the lowers 19.6% of the Interest
delays in the ICN that is heavily congested and lowers 97%
delays in the PlanetLab with 9 nodes on usual case. In addition,
the evaluation of CDN on the PlanetLab shows that it reduces
81% request delay on usual case.

Index Terms—Software-Defined Networking, Distributed Net-
work Control, Algorithms

I. INTRODUCTION

OpenFlow (OF) improves the network programmability by
isolating the control plane from the data plane and by pushing
the network control complexity to the controller soft-ware. It
uses a centralized controller for programing a specific service
and control a set of switches in a domain to act on data
forwarding. The simplicity of OpenFlow via a centralized
programming and configuration makes OpenFlow it a high
favorable for SDN since its first proposal in 2008[1]. Recent
work such as NetCore[2] and Lithium[3] further improves the
programmability of the centralized OF controller by abstract-
ing data plane functions and by providing safer runtime.

The OpenFlow/Software-Defined Networking (OF/SDN)
paradigm is currently a popular programmable architecture. It
allows a programmer or an operator to program their network
and to deploy innovative network service in control plane. It
improves the network programmability by isolating the control
plane from the data plane and by pushing the network control
complexity to the controller software. It uses a centralized
controller for programing a specific service logic and control

a set of switches in a domain to act on data forwarding. For
example, Figure 1 shows four domains to form a distributed
control plane to support the services. NOX[4] / Beacon[5]
Cores shown are the network operating systems (NOSs, also
named as the SDN controllers) that abstract, control and
manage resources of both data plane and controllers hardware
for the services. In SDN, the control plane consists of a high-
level service logics layer and a low-level network control
layer. The service logics are realized though communications
between the controllers using the data plane switches they
control. The network control actions configure the switches to
execute the forwarding logics of the data plane according to
the service logic.

Distributed control plane in SDN (DCP) has caught great
attentions recently. The work of Onix compared the network
control plane problem as a distributed system problem, giving
network designers freedom and simplicity to refactor the con-
trol plane like that it were taken in a centralized device, rather
than a distributed system. Researches on Internet architecture
such as RCP[6] and consensus routing[7] also show that solv-
ing the network control problem from the distributed system
point of view can improve flexibility and configurability.

Programming with DCP is the process of innovating and
maintaining services in DCP. Especially, the low-level network
control of services is hardest to be designed and maintained.
Because it can be significantly complicated by asynchrony and
instability of the control states at the controllers, as the con-
trollers can undergo physical device or link failures, software
or configuration malfunctions and highly unbalanced traffic
load. They lead to a critical issue, i.e, the states of control
become uncontrollable when the transient states are generate
during a series of configurations at different controllers at run
time. Such an issue can trigger further issues such as routing
unavailability, flow interruption and security holes. These latter
problems have challenged the current Internet routers, e.g.
research has shown that the transient unavailability of ASes
in BGP contributes to 90% packet loss.

The state-of-the-art of the SDN controller functions is far
from sufficient in offering efficient methods to deal with the
aforementioned underlying challenges with decreased com-
plexities, which limits the programmability of DCP in sup-
porting novel network services.

In this paper, we propose and analyze two properties that the
distributed control states must hold for programmability. They
are state variability and reusability. The state variability states
that the states of the distributed network controls should be
safely reconfigurable (i.e. to avoid the transient control states
during a reconfiguration, referred as reconfigurability of the
control). The steps of programming the control logics are inter-
preted as series of sequential configurations on the controllers.
And to realize the programmability, the transient control states
should be coped with in a process of enforcing those steps and
the process should be controllable. The programming process
is able to be controlled and realized by enforcing the con-
figurations over the controls . For example, a step of setting
up filters in firewalls is safely enforced by reconfiguring its
underlying firewall control system.

We then provide a brief description on an abstract super-
vision layer. The layer sits between the controller (i.e, the
network operation system) and network service (see Fig.1).
It implements mechanisms to handle the dynamics states due
to physical network changes or operational changes and the
dynamics of the network control. And it which offers the
two features for the services, namely, re-configurability of the
control state to achieve high availability and reusability of the
control state to leverage the system complexity of the control.

The core interfaces that the supervision layer provides
are primitives to achieve consistency of control states and
safety of control state variations of a service. In this paper,
we introduce two algorithms of reconfiguration and reuse
primitives to achieve variability and consistency of the control
states, respectively. Specifically, the reconfiguration algorithm
is to realize the safe variation process of control states, i.e. to
eliminate the transient states in the process. The algorithm
is executed in the distributed way by all service nodes,
making the variation process is transactional and atomic. We
implement the algorithm based on Paxos[8] and DHT[9]. The
reuse algorithm enables the control states of a service to
be accessible by for network controls of all services. We
implement the algorithm based on DHT. The two algorithms
are implemented on the popular SDN controllers, namely,
NOX and Beacon, and also NS-3[10].

Fig. 1. Distributed Programmable Network Control in SDN

Further, the paper shows how to program new network
services using distributed control in SDN with the support
of and the supervision layer. Three novel network services
are used to illustrate the programmability of the distributed

network control in SDN. They are Information-Centric Net-
working (ICN), Content Distribution Networks (CDN) and
Inter-Domain Routing (IDR). Supervised ICN shows that its
control states (PIT table ?) can be reconfigured safely in the
presence of link congestions, lowering 19.6% Interest delays
in the simulation and 97% in the PlanetLab. Supervised CDN
shows that path decisions are made better for the content
requests, reducing 81% request delay in the PlanetLab. In
addition, we illustrate that the ICN and CDN function of
updating routing information reuses the function module of
the IDR, a routing protocol we design and implement for the
distributed control routers. These cases show that the steps of
a re-configuration can be safely enforced so as to overcome
the performance bottleneck, with its unique and efficient
primitives. The three cases are evaluated in both NS3 ndnSim
simulator and PlanetLab to show its advantages. In both
evaluation platforms, the supervisions layer is implemented.

These contents are organized as follows. Two problems
of DCP are discussed in Section II. The reconfiguration and
reuse algorithms of DCP are introduced in Section III. Section
IV gives implementation, examples and evaluation of the
algorithms. Section V concludes the paper.

II. PROBLEM STATEMENTS

In this section, we specifically discuss the control state
variation and reuse problems.

A. Control State Variation Problem

The control states of the distributed control plane (DCP) can
face the same problem as BGP does, i.e. the states are very
hard to be reconfigured because the resulting transient states
can disturb network operation and decrease performance. With
BGP, research has shown that the transient unavailability of
ASes in BGP contributes to 90% packet loss. Such hardness
increases the complexities in developing a safe distributed
control plane, and deteriorates the flexibility in its programma-
bility. Thus variability is one of the design goals for DCP in
SDN. It describes the issue of safely transiting from one view
of the distributed states to the next view. Better variability
should safely eliminate the transient packet loss, routing black
hole and routing loops.

The reconfigurability of the distributed control plane in
SDN enables the variability. Specifically, the SDN controller
provides an underlying mechanism to ensure controllability
for the state varying process of the control and to deal with
the transient control states. So the configuration for a control
system can be easily realized to remove the hardness of the
state variation process for the distributed control.

The technical way to solve the variability issue is to deal
with the uncontrollability nature of the state update process
of the distributed control. Its caused by asynchronism and
instability issues of the execution of the network control, i.e.
the transient states between two logical times of an execution
of the network control cause packet lost, thus degrading the
availability of service. Formally, the transient control issues
can be modeled as Eq.1. Given two logical times of a network

control of a service denoted as t and t+1, and a update for the
control causes that two state sequences of the control must be
changed between the two times, thus the transient states are
defined as the intermediate state sequences for epochs between
the two times. In addition, the transient states are generated
only if there are at least two states changed between the two
sequences.

(S1, S2, ..., Sn)t −→ (S∗
1 , S

∗
2 , ..., S

∗
n)t+1 (1)

Consider the example shown in Fig.1, the failure state
changes of the border routers for different domains result in
the routing changes. Such routing changes require the each
controller achieves the state consistency of their domain based
on DHT and then compute a new routing based on the current
states. Such transition causes the routing control experiences
the transient states between two logical times of old and new
routing. Further to say, it results in the possibility of the loss
of in-flight packets. In addition, the malicious packets are
possible to be forwarded during the transient state, causing the
security issues. Our approach to solve this issue is to conceal
the complexity of the distributed update logics that deal with
the transient state and use the reconfiguration primitive of
the supervision layer to perform the update. Specifically, the
concept of the primitive is to control the service during the
transient state and operate the transient state in another control
system (see Section IV.B).

B. Control State Reuse Problem

The application layer traffic engineering (ALTO) techniques
in the current Internet like those in P4P[11] requires the
application to cooperate with the network layer. However,
as the routing controls are dynamically computed and their
routings are invisible to the applications. Thus, its hard to
accurately predict the forwarding costs.

The control states of DCP can face the same problem as
ALTO does. The distributed control states of a service are
hard to be consistently captured by other services. As such,
allowing a service to reuse the control state of a service should
be necessarily support to improve the programmability. And
exposing the network control state helps the performance of
the service easier to be optimized by the control dynamics for
the traffic.

III. ALGORITHMS OF DISTRIBUTED PROGRAMMABLE
CONTROLLERS

In this section, we first give efficient data structures for
representing the control states in SDN controllers. Then, we
give concepts and algorithms of reconfiguration and reuse
primitives.

A. Data Structures of Control States

The control states are maintained as a state object in the
supervision layer. Specifically, the state object is a generalized
data structure to hold a set of states and further realized by
a hash table with versioning, which is composed of tuples
of the element of ¡key, value¿ and a version. In detail, the

key and value are the state name and value, respectively, e.g.
latency and 200ms. Formally, the model is denoted as the
Eq.2. where t is an epoch, and ℓ, Θ and λ are the set of state
object identifier, key-value pairs and version, respectively, and
in addition it satisfy the criteria: for an epoch t and t + 1,
λt+1 = λt + 1 if and only if Θt ̸= Θt+1.

ωt
ℓ ≡

(
ℓ,Θt

ℓ =
{(

kt1, v
t
1

)
,
(
kt2, v

t
2

)
, ...,

(
kt|Θt|, v

t
|Θt|

)}
, λt

ℓ

)
(2)

And given a service, a quorum is a set of membership of
the distributed state objects, which is defined as the set of
the state object references that refer to their state objects in
the service. Formally, we denote a quorum as the Eq.3, where
u1, u2, ..., um is a sequence of the node identifiers with which
the controllers in the quorum identify each of state object in the
quorum by its own object reference, nk is the node identifier
with which the core identify where the quorum is currently
stored and ℓ is the quorum identifier.

Ωt,nk

ℓ = {ωt,u1 , ωt,u2 , ..., ωt,um} (3)

Overall, to reflect the dynamics variations of the distributed
states of a service when the service is executing, the core
treats the variations in the way that the service are realized and
performed in the I/O automata model. In addition, such model
is used to capture the distributed states and collaboration
actions of distributed processes[12]. In detail, to leverage the
model complexities, the states and actions of a service are
defined as the snapshot of states of a quorum and the actions
of callings of the dynamics primitives for the nodes in the
quorum for the service. In addition, the execution sequence
from epoch 0 to h of the service is seen as a distributed process
in which the states and actions are intertwined with each other.
Thus, the logical time of a quorum is a sequence of versions of
all ordered state objects in the quorum, which is represented
in the WelchTime model[13]. Formally, to further discuss the
dynamics primitives, a dynamics process is denoted as the
Eq.4, where St

ℓ and βt
ℓ are the states and actions of all state

objects in a quorum at epoch t, respectively, and version of
the quorum is denoted as Kt

ℓ (ω̃
t
ℓ) in Eq.5.

αℓ (0, h) ≡
(
S0
ℓ , β

1
ℓ , S

1
ℓ , β

2
ℓ , ..., β

h
ℓ , S

h
ℓ

)
(4)

Kt
ℓ

(
ωt
ℓ

)
≡

(
λ
t,nu1

ℓ , λ
t,nu2

ℓ , ..., λ
t,nu|Ω|
ℓ

)
(5)

B. Control State Reconfiguration Primitive

The variability ensures safety of state variation process to
avoid the transient states in varying. And the process is seen
as a sequence of reconfigurations. The technical way to solve
the variability issue is to deal with the uncontrollability nature
of the state update process of the distributed control.

The control is reconfigured if it needs to distributed update
its states by an external event. Such event has two types: (1) the
event generated by the control itself like timeout for routing
convergence, and (2) the event generated by other controls,

e.g. a link congestion event from a routing control can trigger
the control of ICN to update the content routing.

The procedure of the reconfiguration primitive is shown
in Alg.1. The algorithm is executed in a node of a service
by which an external event is triggered (named as the origin
node). The execution is distributed taken on all nodes of a
service and takes the following steps: (1) The origin node
updates the global state to 1 that indicate a reconfiguration is
requested for all nodes in the service; (2) all nodes hang up
the current program and then perform the transient control;
(3) the reconfiguration is taken after all nodes have finished
their transient controls; and (4) all nodes restore the transient
control and then resume their program. Formally, we provide
the algorithm in Alg.1, and consider to use the spanning tree
for multicasting, the time and message complexities of the
algorithm are O(logN) and O(N), respectively.

Algorithm 1: Pseudo Code of Reconfiguration Primitive
input : ReqRecfState: 0 or 1 to indicate whether a

reconfiguration is running for the current service
RecfState: the global consensus state to indicate

the process of a reconfiguration

//Program below distributed executes over the
supervision layer for each controller
lock ← 0
Upon receiving ReqRecfState:
Mutex.lock(lock)
if ReqRecfState = 1 and InExecuting = 0 then

InExecuting ← 1
Hangup program of current service node
Send and wait transient control event of service
Paxos.propose(RecfState, enteringrecf)
if Paxos.accept(RecfState) != enteringrecf then

Resume the program and rollback
Mutex.unlock(lock)
return

Send and wait performing recf. event of service
Paxos.propose(RecfState, leavingrecf)
if Paxos.accept(RecfState) = leavingrecf then

Send and wait finish. recf. event of service
Paxos.propose(RecfState, leavingrecff inal)
Paxos.accept(RecfState)

Resume the program
Mutex.unlock(lock)

There are three stages for the service to realize their
reconfigurability which are (see Fig.2): (1) the transient control
entering stage to realize the temporary resource control for
the reconfiguration; (2) the reconfiguration stage to realize the
changes of the control; and (3) the transient control leaving
stage to realize the resource control that restores the resources
for the reconfiguration.

C. Control State Reuse Primitive

Reusability realized by the reuse primitive enables the
control states accessible for all network controls. Specifically,

the algorithm of the reuse primitive works in the two modes
to promote responsiveness of the control: (1) The active mode
allows a quorum of nodes of a control (i.e. a set of node)
consistently retrieving states of a control; and (2) The passive
mode allows a control consistently listening on events of state
changes of a control. The reuse primitive is realized based on
DHT. Its used to store the control states and allows the states
being stored and retrieved[9]. And the event triggers in DHT
are realized to allow the control registering state criteria for
states of a quorum of nodes and receive states update of the
quorum if the states satisfy the criteria[14].

Further, the primitive deals with the two factors of networks:
(1) The asynchrony causes time differences of state retrieval
processes, which can ruin the consistency. To deal with those
issues, the Chandy-Lamport algorithm[15] to snapshot the
consistent states of the requested quorum is executed before
getting a quorum of DHT values. In detail, the algorithm is
executed on all nodes that send a marker to a quorum of nodes
to snapshot their local state and broadcast the marker to its un-
broadcasted nodes. For efficiency, routing of marker is decided
on the finger table of DHT for a specific DHT key; and (2)
The instability of networks can cause execution failures of
DHT or ChandyLamport. The issue is pushed to Paxos[8] that
is finally called so as to make consensus on the requesting
quorum for the states.

IV. IMPLEMENTATION, EXAMPLES AND EVALUATION OF
ALGORITHMS

In this section, we first discuss implementation of the
reconfiguration and reuse primitives. Then, we provide and
evaluate a set of concrete examples of DCP to showcase the
performance gains of the primitives.

A. Implementation of Algorithms

The supervision layer sits between the distributed service
and the SDN controllers (see Fig.3). It enables the reconfig-
urability of the services to avoid the transient control issue and
also enables the reusability of the network controls so as to
improve the control performance according to states of other
controls. In detail, the layer is constituted with two parts:

• The I/O automation based programming model is pro-
vided for the upper distributed service. In the model, the
parallel tasks running in a single machine all make the
transition of their program state triggered by an input to
the tasks where the distributed tasks run in a network
as a distributed system. Each task is encapsulated as a
component. Network states of the service are distributed
controlled by the network control of the service to achieve
a control objective.

• The supervision core realizes the primitives and supervis-
es the resources allocated for the services. The core sepa-
rates the network control of the services from the physical
networks. To support the services, the core realizes and
provides three types of APIs for the network control:
(1) The consistency primitive achieves the distributed
state consistency for all nodes of the service. States of

Fig. 2. Stages of Control State Reconfiguration

the controls are stored in the distributed hashing table
(DHT) of the layer that allows the states to be stored
and retrieved in consistency[9]. In detail, the DHT in
the core provides the common get/put APIs and also
provides an event triggers. The trigger allows the control
registering a state criteria and a callback to a quorum
of nodes and the control receive states update of the
quorum if the states satisfy the criteria; (2) The consensus
primitive makes the distributed value that are consented
by all nodes in a quorum of nodes. In detail, its realized
based on the Paxos algorithm[8]; (3) The reconfiguration
primitive safely performs a configuration of the service,
e.g. configuring the flow table of switches ; and (4) the
reuse primitive allows the current service to be able to
access the states of the other services. To integrate with
SDN controller, the core provides the standardized APIs
that are allowed to program the flow table of OpenFlow
switches and configure the states of the switches.

Fig. 3. Design of Supervision Layer

B. Example of Inter-Domain Routing

The Inter-Domain Routing service (IDR) is developed for
communication among distributed controllers of in SDN,
where each controller controls the switches in its domain. It
adopts the idea of consistency-based network routing, which
has shown better flexibility than the common dynamic Internet
routing approach[7][16]. IDR builds on the consistency prim-
itives of the supervision layer. So it computes routes to reach
other domains based on the consistent states of the network
topology. As shown in Fig.1, the red dash lines form the
topology.

IDR takes three steps to converge to new routes in the
distributed manner: (1) Each controller obtains and aggregates
the route states of switches in its domain, and determines the
IDR updates for propagation; (2) Each controller uses Dijkstra

algorithm to compute the domain level routing path. While
updating the controllers, IDRuses Paxos to obtain consensus
on the condition of whether or not the routing computation
is finished for all controllers. As a result, all the controllers
routing states are consistent; and (3) Each controller calls the
reconfiguration primitive to replace the routing states of its
switches. Thus, this step can be safely executed without the
transient phase.

During the reconfiguration, the in-packet packets that are
injected into the border switches are maintained in the tempo-
rary buffers before enforcing the new routing states and then
switched out of the buffers according to the new routing after
the enforcement.

In detail, the execution of the routing takes the steps as
Alg.1. It has five tasks: (1) The first task aggregates the
updates of the switches in its domain to minimize the con-
sistency overhead and maintains the topology consistency; (2)
The second task distributed computes the consistent domain
level routing based on the network topology by adopting the
Bellman-Ford algorithm. Further, the Paxos algorithm is used
to ensure the resilience against the Byzantine issues[17]; (3)
The third tasks perform the transient control before and after
the reconfiguration, to ensure safety of the reconfiguration; and
(4) The last task to realize the reconfiguration logic that is to
safely configure the border routers.

In the Alg. 2, the routing states are updated by three steps:
(1) Recent updates of switch states are locally aggregated into
the topology for each controller; (2) Each controller consents
on the states of topology and compute its own routing; and
(3) The leader node call the reconfiguration primitive to re-
configure the routing states for all nodes (the reconfigurability
of IDR is ensured to avoid the transient control).

C. Examples and Evaluation of Reconfiguration and Reuse

To optimize performance of other controls, IDR exposes
the topology states that are reusable for the controls including
ICN and CDN (see Fig.4). Changes of the states trigger ICN
and CDN so as to react to the event to perform their control
adjustments. Specifically, we discuss them correspondingly.

1) Information-Centric Networking: ICN enables the in-
formation providers to deliver contents at the subscribers
requests by receiving senders Interest packets. Our ICN is
realized based on CCNx[18]. The current works realize the
mechanisms in the global fashion: (1) The ICN networks
globally choose a node to periodically compute the best paths
to the prefix for each origin content name of all nodes by
the Bellman-Ford algorithm; and (2) The naming in ICN is
performed by a centralized node that is used to periodically
probe the content in the networks to ensure the freshness and

Algorithm 2: Pseudo Code of the IDR Service
input : topology: states in the consistency table

//Program below distributed executes over the
supervision layer for each controller
Upon receiving switch update m:
updateCache← updateCache ∩m
if updateCache is full or timer reaches MRAI then

Consistency.put(topology, updateCache)
Upon topology update:

Mutex.lock(lock)
[DP] ← Bellman-Ford(topology.domains)
Paxos.propose(routing, [topology.domainsDP])
[topology.domainsDP] = Paxos.accept(routing)
if the node is leader then

Reconfigure(IDR, [topology.domains, D, P])
Mutex.unlock(lock)

Upon entering into the transient control:
Hang up the switching buffers for border switches and

receive the in-flight packets into the temporary buffer
Upon finishing reconfiguration:

Resume the switching buffers and release the in-flight
packets into the switches
Upon performing reconfiguration:

Configure the border routers with
[topology.domains D P]

Fig. 4. Control State Reuse in IDR, ICN and CDN

staleness of the content.
However, the heavy content requests make the states of

underlying link gone into the link congestions, while the
slow routing is hard to capture such highly dynamics of the
congestions, decreasing the control performance. Meanwhile,
changing the routing causes the ICN control gone into the
transient states in which decrease availability of the ICN
service.

To deal with such issue, ICN reconfigures its control if the
states reveal a link is congested. The content items placement
for the switches that is realized by the ICN control should
be able to safely and optimally replace the items to satisfy
the congestion changes, so as to improve performance by
exploiting the distributed nature of ICN. Supervised ICN
shows that its control states can be reconfigured safely in the
presence of link congestions, lowering 19.6% Interest delays
in the simulation and 97% in the PlanetLab (see Fig.5 and 6).

 0

 0.2

 0.4

 0.6

 0.8

 1

 11247 19247 27247 35247

P
ro

ba
bi

lit
y

Delay in us

no superv.
with superv.

Fig. 5. Performance Comparison of ICN in ECDF of Mean Values of
Content Request Delay (simulated by ndnSim[10] with 200 nodes generated
by BRITE[19])

 3000

 6000

 9000

 12000

 0 300 600 900 1200 1500 1800 2100 2400 2700 3000

D
el

ay
 in

 m
s

Time in Seconds

no superv.
with superv.

Fig. 6. Content Delays for ICN Nodes on PlanetLab[20] Impacted by Heavy
Link Congestion

2) Content Distribution Networks: CDN is consisted of a
centralized CDN content publisher to manage the content and
many CDN content distributors to distribute the content[21]. It
realizes the data accessing with better scalability by delivering
replica of the content distributors close to the requesting end-
users.

However, the performance of the current CDNs is impacted
by the dynamics of the networks as well as the complexities
of the topology discovery and the routing. Such that, deliver-
ing the SLA (Service Level Agreement)-assured CDN flows
like constraining upper bound of delay is difficult because
it requires a correct choice of content distributors for the
requesting user. To deal with such issue, CDN reuse the states
of IDR, so that it can update its content routing if the states
reveal topology is changed. Supervised CDN shows that path
decisions are made better for the content requests, reducing
81% request delay in the PlanetLab (see Fig.7).

 0

 2400

 4800

 7200

 9600

 0 250 500 750 1000 1250 1500 1750 2000

D
el

ay
 in

 m
s

Time in Seconds

no superv.
with superv.

Fig. 7. Content Delays for CDN Nodes on PlanetLab[20] Impacted by Highly
Flutuated Congestion States of Links

V. CONCLUSION

The network control is distributed in nature in requesting to
achieve the better scalability, reliability and responsiveness.

In this paper, we introduce reconfigurability and reusability
as two critical factors to enable the programmability of the
distributed control plane in SDN. We give concept, algorithm
and example of reconfiguration and reuse primitives. They al-
low the network control of the services to be safely configured
by the external events like the topology congestions in order to
avoid the transient control issues and to improve the network
performance.

This work has made a significant contribution to the dis-
tributed network control in SDN by introducing for the first
time the re-configurability of the distributed services.

ACKNOWLEDGMENT

This work is supported by the National Basic Research
Program of China (973 Program) (2012CB315903), the
Key Science and Technology Innovation Team Project of
Zhejiang Province (2011R50010), 863 Program of China
(2011AA01A107) and the National Natural Science Founda-
tion of China (61070157). This work was also supported in
part by the BBN/NSF Project 1783.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[2] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and
run-time system for network programming languages,” in SIGPLAN,
vol. 47, no. 1. ACM, 2012, pp. 217–230.

[3] H. Kim, A. Voellmy, S. Burnett, N. Feamster, and R. Clark, “Lithium:
Event-driven network control,” 2012.

[4] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, “Nox: towards an operating system for networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105–
110, 2008.

[5] “Beacon project.” [Online]. Available: http-
s://openflow.stanford.edu/display/Beacon/Home

[6] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and J. Van
Der Merwe, “The case for separating routing from routers,” in SIG-
COMM, 2004.

[7] J. John, E. Katz-Bassett, A. Krishnamurthy, T. Anderson, and
A. Venkataramani, “Consensus routing: The internet as a distributed
system,” in USENIX, 2008.

[8] L. Lamport, “Byzantizing paxos by refinement,” in Distributed Comput-
ing. Springer, 2011, pp. 211–224.

[9] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in
a dht,” in USENIX, 2004.

[10] A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnsim: Ndn simulator for
ns-3,” Univ. of California, Los Angeles, Tech. Rep., 2012.

[11] V. Gurbani, V. Hilt, I. Rimac, M. Tomsu, and E. Marocco, “A survey
of research on the application-layer traffic optimization problem and the
need for layer cooperation,” IEEE Communication Magazine, vol. 47,
no. 8, pp. 107–112, 2009.

[12] N. Lynch and M. Tuttle, “An introduction to input/output automata,”
Centrum voor Wiskundeen Informatica, vol. 2, no. 3, pp. 219–246, 1989.

[13] J. Welch, “Simulating synchronous processors,” Information and Com-
putation, vol. 74, no. 2, pp. 159–171, 1987.

[14] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” in ACM Symposium on
Operating Systems Principles: Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles, vol. 14, no. 17, 2007, pp.
205–220.

[15] K. M. Chandy and L. Lamport, “Distributed snapshots: determining
global states of distributed systems,” ACM Transactions on Computer
Systems (TOCS), vol. 3, no. 1, pp. 63–75, 1985.

[16] N. Kushman, D. Katabi, and J. Wroclawski, “A consistency management
layer for inter-domain routing,” 2006.

[17] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transaction on Computer System, vol. 20,
no. 4, pp. 398–461, 2002.

[18] “Ccnx project.” [Online]. Available: http://www.ccnx.org
[19] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach to

universal topology generation,” in MASCOTS 2001. IEEE, 2001, pp.
346–353.

[20] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, “Planetlab: an overlay testbed for broad-coverage
services,” ACM SIGCOMM Computer Communication Review, vol. 33,
no. 3, pp. 3–12, 2003.

[21] M. J. Freedman, “Experiences with coralcdn: A five-year operational
view,” in USENIX NSDI. USENIX Association, 2010, pp. 7–7.

