
Clustering Technique for VC-VANET

Michael Lee

Abstract— As small-scale devices get more and more com-
mon, more means to connect many devices into new types of
networks that will allow the exchange of localized information
are being developed. One such rising field of networks is
VANET, a network that connects devices in or associated with
vehicles in an ad-hoc fashion. One of the main goals of this
sort of network is to give geographically bounded information
that is of particular relevance to cars passing through the
area. As such, we are working of developing a geographically
bound VANET that can run cloudlet applications within a
specific cluster of cars. We call this form of VANET Vehicle-
Crowd based VANET (VC-VANET). One of the areas that
we are focusing on enhancing with VC-VANET is behavior
of the network at intersections, since these represent areas
where cars will be stopped for a period of time, which we
can use to create a stable network. As such, one of our areas
of focus is determining how large we can expect the network to
expand at each intersection at any given time. Our approach
to solving this problem is through Rad-Ap, a C++ class we
created to approximate the threshold distance, or radius, of
the network that VC-VANET will maintain at the intersection
using predictive methods based on the density of traffic at the
intersection.

I. INTRODUCTION

VANET applications attempt to connect the devices in

multiple vehicles so that they can exchange location relevant

to the current location or the process of driving. They may

do this in order to advertise local services such as gas stops

or rest areas that the driver may be interested in, or to

provide warnings about traffic issues in nearby roadways.

Some future versions may even pass live data on how the

car is being steered so that the cars behind it can mimic the

inputs, reducing the required work for the followers to drive.

Regardless of their purpose, making VANET applications

scalable is vital to their success, as a large number of devices

will be connected in a VANET system.

One of the major ways to help increase the scalability

of VANET systems is to group cars together into what

is commonly called clusters or vehicle-crowds (v-crowds)

[1]. These v-crowds represent a group of cars that can

communicate with each other freely and will remain able

to do so for some period of time, similar to a Local Area

Network. They are added into the network in a hierarchical

manner on top of the foundations of a traditional vehicular

ad-hoc network. These v-crowds are designed to be used

in our VC-VANET to introduce additional capabilities for

local computation and collaborative storage systems across

the vehicles inside of the v-crowd.

Applications generally try to find clusters of cars that

are travelling together down the same section of the road.

However, these v-crowds are difficult to identify due to the

high mobility of vehicles and the lack of cohesion within

groups when driving [2]. Fortunately, unlike normal mobile

ad-hoc networks, systems within a VANET are generally

required to follow the rules of the road, which gives us some

additional knowledge that we can use to help identify clusters

that we can use in our VANET applications [3].

One of the major features of VC-VANET is that the

v-crowds it identifies are intended to be geographically

bounded and can be used to run cloudlet applications within

that area. This feature exists so that the cloudlet applications

can gather and distribute information relevant only to that

particular area, including congestion information, nearby

points of interest, and many other types of local data. As

such, our of the major areas of focus for this project was

investigating how we could use intersections to identify v-

crowds that we could use for our system. We chose to

focus on intersections for this since they can slow down

traffic, force them to form groups, and are always located

at a static position. We then chose to investigate further

into intersections with traffic lights, due to a couple of

distinct features of these intersections. The first feature is

that traffic lights have a more predictable pattern of vehicle

dispersion when compared to intersections with stop signs

or no signage at all. Many of them are locked to set cycles,

and even the ones that arent are generally ruled by a very

simple algorithm, making them very predictable. Traditional

intersections without traffic lights are largely ruled by human

decision making, which is far less straightforward to predict.

The second feature is how traffic lights tend to be employed

at intersection that have a high traffic density, increasing the

ease of creating clusters as well as the stability of the clusters

at that intersection. The third feature is that traffic lights in

our region have vehicle traffic data collected on them and

stored by the Alabama Department of Transportation. By

collaborating with them, we were able to access and use

data on local intersections to help guide the creation of our

project.

The product we developed for use with VC-VANET we

termed Rad-Ap, which is short for Radius Approximator.

This product uses data on vehicles arriving at the intersection

to predict the current density of vehicles at the intersection,

then uses this to approximate the size of the v-crowd

currently at the intersection. It can be run within a VC-

VANET system as one of the applications it maintains to

help the system attempt to form a v-crowd of an appropriate

size without having to collect information on the vehicles

currently at the intersection. It was developed with intersec-

tions that have traffic lights in mind, but may be able to be

extended to other locations as well.

* The work is supported partly by the National Science Foundation under Grant No.1719062. Any 
opinions, findings, and conclusions or recommendations expressed in this paper are those of the 
author(s) and do not necessarily reflect the views of the National Science Foundation.

Technical Report
Department of Computer Science
University of Alabama
July 28, 2018



II. BACKGROUND AND RELATED WORKS

The architecture of VC-VANET is run on top of existing

VANET system and adds in the new component, namely the

v-crowd, when a group of vehicles in the same area forms.

Once these v-crowd forms, each vehicle continues to have

all the capabilities it had when in was just connected by

the VANET system, but also gains the ability to collaborate

in local computing and storage projects managed by VC-

VANET. While these v-crowds may form sporadically at

any location, we chose to focus on v-crowds anchored at

a particular location, as they may last for a longer period of

time. This may especially be the case at intersections along

well-trafficked roads, so they were of particular interest to

us. This upper tier of v-crowds is a logical layer built on top

of the lower tier of vehicle to vehicle communications.

Vehicles within a v-crowds will collaboratively hold pieces

of information and perform data processing in a distributed

systems architecture. These data chunks and tasks can be

passed within the v-crowd or to approaching vehicles. A

v-crowd is similar to the concept of a cloudlet [ref], but

VC-VANET is focused on the network aspects for forming

storage and performing computations. In order to ease the

communication cost across vehicles, a cluster head may be

employed to coordinate systems and pass messages. When

the cluster head leaves, the system can choose a new head

using methods such as reelection or leader handover.

A. Rad-Ap Functionality

Rad-Ap works by recording data on when vehicles arrive

at the intersection and using this data to predict the current

density of vehicles at the intersection using a methodology

developed for this particular purpose [4]. We then associate

that density with a threshold distance, and use feedback from

the system that tells us whether the network was able to be

established across that distance to adjust the threshold dis-

tance to more accurately represent a maintainable distance.

Each declaration of the class will represent one intersection.

Optimally, the class would be pre-trained on recorded data,

but since it is the first existing software we found that collects

data on this subject, it is also capable of being deployed

untrained. As it runs, it collects data about the intersection

and how the density relates to the threshold distance, and

can print this to a file that can be opened by the class to

pre-train a new declaration of the class on the data that the

old declaration collected.

In addition to this, the class allows the user to adjust many

of the core variables of the class, so we can use the data

stored by previous runs of the class to determine constants

that are more appropriate to the location the class is being

deployed at. The variables that can be changed include the

default value that each new density starts on, how large

the clusters of densities that are considered the same are,

the recovery value for when a threshold distance would hit

zero, and how quickly the threshold distances change after

each reported success or failure. Additionally, RadAp has

a system for passing and storing the current densities of

local intersections. It currently does not do anything with

this information, but other applications could be interested

in using this data for various tasks. The size of the range

for intersections to be considered local is also a variable that

can be adjusted on declaration of the class.

B. Previous Work

VANETs have been adapted to provide a wide range of dif-

ferent services. Many of these are focused on using VANETs

to improve traffic safety. These projects focus on a number of

different issues, including detecting traffic accidents that have

already occurred and avoiding them, avoiding collisions in

intersections, and avoiding high congestion areas [5] [6] [7]

[8] [9] [10]. Other applications are interested in providing

internet connectivity to the users devices in the system,

affording a great deal of additional utility to VANETs [11]

[12] [13] [14]. Previous studies have also researched using

VANETs to transport data across long distances [15].

Many previous works have laid the groundwork for pro-

cesses that we will need to run VC-VANET as well as our

Rad-Ap system. Among these are projects that developed

broadcast techniques for VANET [16] [17] [18], routing

techniques for VANET [3] [19] [20], VDTN store-and-

forward techniques for dealing with intermittent connections

[21] [22] [23] [24], and connectivity analysis [25] [26] [27]

[28].

Many papers have focused on creating clustering tech-

niques for VANET [29] [30] [31] [32]. Many of the clus-

tering techniques proposed by these papers are developed

for application-specific clustering techniques, so using the

techniques they put forth would be sub-optimal for our

application [50]. We chose to not pursue a general purpose

clustering technique for our application due to the specific

nature of our application.

Since the advent of VANET technologies, many different

clustering algorithms have been developed for VANET im-

plementations. These algorithms generally started off as al-

gorithms created for MANET systems, but gradually moved

to be increasingly tailored for VANET systems, as the nodes

mode very differently in a VANET system from how they

do in a MANET system. Many of these implementations can

be classified into one of seven different types of algorithms:

general purpose, routing, channel access management, se-

curity, vehicular network topology discovery, traffic safety,

and combinations with cellular infrastructure [33]. General

purpose algorithms are created without any application in

mind and generally attempt to maintain a robust connection

in the face of high vehicular mobility [34] [35] [36]. Routing

algorithms attempt to build a hierarchical overlay on top of

the network that can be used to pass packets across to other

clusters [37] [38] [39] [40]. Channel access management

algorithms have the cluster head control when a node is

allowed to access the channel [41] [42]. Security algorithms

feature a large amount of protection against malicious ve-

hicles entering the cluster, allowing the cluster to function

as a trusted space [43] [44]. Vehicular network topology

discovery algorithms use informations on the clusters to

create maps of the connectivity between vehicles, which is



important for both communication protocols as well as traffic

management systems [45]. Traffic safety algorithms collect

data from other cars within the cluster and uses it to help

predict and prevent car collisions within the cluster [46].

Algorithms that combine with cellular infrastructure seek to

provide a link between a VANET cluster and the internet

that will reduce the load on the cellular network while still

providing sufficient access to all the vehicles in the cluster

[47] [48] [49] [50].

Our application would be best classified as a routing

algorithm developed specifically for use in VC-VANET.

However, it differs from other algorithms due to the focus

on using data on intersections to create the clusters, which

makes it have the distinct properties of being geographically

bounded as well as being determined by using patterns

from the vehicle density that are tuned specifically for

intersections.

III. MEASUREMENT METHODS

In order to test how well our system worked, we created

a program that would run our class on test data. For our test

data, we used actual recent traffic data collected from 44

intersections that spanned over 84 weeks. We used this data

to simulate cars entering the intersection over time. The test

program then gets the threshold distance suggested by the

program and fails it if it passes certain criteria. The purpose

of this is to simulate when the threshold distance suggested

becomes too large for the amount of cars at the intersection.

In an effort to better simulate a real world environment, we

made test cases that had random chances of failing regardless

of size and that had some variance in the maximum size that

would work for a particular density. As a result, the tests will

represent a more realistic environment where not everything

will be perfectly executed. We included a variety of different

tests that could simulate different possible situations that the

class could be operating under.

A. Natural Tests

Our first test was designed to represent the class being

employed in a semi-realistic environment where we know

little about the true values of the system. As such, this

test featured an optimum threshold distance significantly

higher that the default starting value, with the default starting

value being set to 5, while the optimum value averaged

around 87. Additionally, the threshold distance increases

proportionally to the square root of the vehicle density at

the time. Theoretically, we would expect this to also be the

case in the real world, since the density represents the area

contained within the circle that our cluster occupies, while

the threshold distance represents the radius of our cluster.

We also included a random jitter that varies the optimum

threshold distance by around 5.4% in order to better represent

the instability of a network connection.

Since our class is also capable of gathering data and

allowing the user to analyse it or just use the the collected

data to start in a pre-trained state, we also included a test that

would examine how our class would perform after having

been trained or pre-set correctly. In order to determine this,

we created a second test that was largely similar, but had

the default starting value set to be equal to the optimal

threshold distance. We then created a test to determine

how well our class would run in an extreme condition to

investigate whether our class is sufficiently robust. As a

result, our third test adjusted the default starting values to

be extremely high relative to the optimal threshold distance,

around 10,000 times the optimal threshold distance, with a

value of 9,000,000.

B. Network Condition Tests

In addition to the previous set of tests, we created a battery

of tests designed to determine how network stability affects

the performance of the class. To accomplish this, we created

six tests with various different characteristics. The first of

these completely removed the random jitter that test 1 had

in order to observe how well our program could perform

on a completely stable network. This was a particular point

of concern for our system, as it was designed to be able to

rapidly adapt to most conditions, but as a result does not

optimize as well as other implementations could on a very

stable network. The next test investigated the exact opposite

possibility: a network that is considerably less stable than

our original tests dummy network. This test increased the

random jitter to have triple the range of the original test,

giving the network a random variance in range of around

16.2%. Then, since our original test did not represent how

a network can randomly drop packets regardless of distance

of transmission, we created a test that replaced the random

jitter with a 5% failure rate on all attempted transmissions.

We then also created a test that had both the tripled random

jitter as well as the 5% random failure rate to see how

well our program could perform in an extremely unstable

environment. We then created one more test that replaced

the cutoff value for the transmission distance with a random

number from 0 to 100. While this test is not particularly

meaningful in an attempt to model a real world system, we

chose to include it in order to determine how well our class

could maintain a reasonable transmission success rate in an

extremely high entropy environment.

C. Scaling Rate Tests

As a means of preventing our assumptions from interfering

with our results, we created one more battery of tests that

examined how our class would perform if our original

assumption that the radius increases proportionally to the

square root of the density was incorrect. This battery of tests

included three new situations: one where the density did not

affect the threshold distance at all, one where the threshold

distance increased proportionally to the density, and one

where the threshold distance increased proportionally to the

density squared.



IV. INVESTIGATION AND RESULTS

We ran our class through each test multiple times and

recorded how close the average threshold distance it sug-

gested was to the optimal threshold distance, as well as

what percentage of suggested connections were actually

successful. Our goal was to reach at least a 95% success rate

in the suggested connections while optimizing the distance

between average threshold distance and optimal threshold

distance as much as possible, so that an application using

our class would be likely to establish a successful connection

each time while sacrificing as little from the number of cars

that would be connected as possible.

A. Natural Test Results

The first test achieved an average suggested threshold

distance of 82.5120 feet, with the true optimum distance for

that test case being 87.0114 feet, putting us within 5.18% of

the optimum value. Additionally, it achieved a success rate

of 95.07779%, just over our goal value of 95%. Since this

test most resembles how wed expect the real world would

perform, this is indicative of our classs ability to maintain a

high success rate when used untrained in an actual system

while keeping the suggested threshold distance reasonably

close to the true optimum value.

The second test performed slightly better on average,

which is expected since it represents how the class will

perform once we have gathered data on the intersection and

used it to adjust future versions of the class. However, the

difference was surprisingly small, with the average threshold

distance being only 0.0326 higher than that reported in the

first test case, and the success rate was actually 0.0029%

lower. Both these differences can be largely attributed to how

the first test case would have had a series of lower numbers

early on as it was growing to find the true mean which would

have had a higher success rate, but would pull down the

average suggested threshold distance. As such, we can infer

that both test cases had similar performance in the long term,

but the second test case had more optimal performance on

the early values since it was already pre-adjusted.

The third test case produced some unexpected results, as

it also reported reaching a success rate of 95.0654% on

attempted connections, but it had an average suggested radius

of 271.6135 feet. By examining the collected data at the end

of the test, we were able to determine that the suggested

radiuses at the end were largely less than the average, and

if the median suggested radius were than high then with

the optimal suggested radius remaining at 87.0114, the class

should have had a success rate of less than 50%. As such, we

can infer that the median was not as high at the mean, which

indicates that the suggested values were heavily skewed

towards lower values. Thus, it would seem that our average

was thrown off by the values starting at 9,000,000, and is not

exceptionally meaningful in this instance. However, by the

success rate remaining over 95%, we can determine that our

class seems to have given a large amount of suggestions that

were under the optimum threshold distance, and maintained

our goal success rate even with an unreasonable initial value.

Variance across multiple runs of these test cases was

incredibly low, with all runs having a difference of less

than 0.0248% in average suggested threshold distance and

a difference of less than 0.00126% in the success rate. As

such, differences between the different tests is very likely to

be indicative of an actual difference in performance between

the tests rather than the result of statistical variance.

B. Network Test Results

We next ran the battery of tests the focused on how

network performance would impact the program, using the

same goals as we did for the first three tests. However, the

optimal threshold distance changes slightly based on the test,

and for the tests that had a 5% random failure rate it would

only be possible for our class to reach a 95% success rate if

it had a 100% success rate on all the transmissions that did

not randomly fail, so we did not expect those tests to reach



that goal, but still wanted them to get as close to the goal as

possible.

The first of the network tests achieved an average sug-

gested threshold distance of 82.8151 feet, but since this

test removed the random jitter, the true optimum value was

further away than it was on previous tests, at 92.0114 feet.

The success rate was also higher than the previous tests, at

95.1341%. However, in a similar way this is less impressive,

as there was no randomness involved to decrease the success

rate. As such, this confirmed our concerns that the class is not

well optimized to performing in a very stable environment,

so it may be better to use alternative solutions in such

circumstances. However, we did not investigate how well

the class could perform if we passed in variables that were

optimized for the network environment, so it may be possible

for this to be improved with better tuned variables.

The second test in this battery had the least distance

between the optimum threshold distance and the average

suggested threshold distance, with the average value at

75.1491 feet while the optimum value decreased to 77.0114

feet. However, this did decrease the success rate to less

than our goal of 95%, at 94.8629%. Between this test, the

previous, and the first three, we can see how our program has

a tradeoff between success rate and proximity to the optimum

distance. We can affect where this exchange is centered by

changing the values of the class, but these tests give us a

reasonable idea of the sort of relation between these values

we can expect to see when the class is used in a real world

environment.

In the third test case, which replaced random jitter for a

5% failure chance, the success rate fell to only 94.0314%,

meaning that of the transmissions that didnt randomly fail,

98.98% succeeded. However, in exchange for this, the av-

erage suggested threshold distance plummeted to 57.1815

feet, while the optimum returned to the value it had in the

first network test case. This is a result of the class being

set up to seek a 95% success rate in a system where a 95%

success rate is almost impossible to achieve. This further

demonstrates the exchange rate between average suggested

distance and success rate within the class.

The fourth test case, which combined the increased jitter

of the second and the failure rate of the third, saw a mix of

results. As in the case of the second, the average suggested

threshold distance grew closer to the optimum value than it

was in the third, with the average decreasing only to 51.7103

feet, while the optimum decreased to 77.0114 feet. Also

similarly to the difference between the second and first, the

success rate fell only slightly to 93.9753%. As such, we can

see that the program is quite resilient to increases in the

amount of random jitter, especially when compared to how

much it suffered from having a high simulated packet drop

chance in the third test.

The fifth test case is somewhat more difficult to evaluate,

as there isnt a set optimum value for the threshold distance

to reach. However, it did reach a success rate of 93.7782%

while maintaining an average suggested threshold distance of

5.72002 feet. As such, we can see that the class will maintain

a high success rate even in situations with very unstable

networks, but in exchange may perform suboptimally in

terms of average threshold distance as compared to the

optimum value.

C. Scaling Test Results

We ran the last battery of tests designed to determine how

different scaling rates could affect the performance of the

class using the same constraints as the previous tests. Once

again, the optimum value for threshold distance varied from

test to test, so we made sure to re-evaluate the optimum

values for each test.

The first of these tests, which had no scaling, performed

comparably to how the class ran with the square root of

density scaling in the first three tests. It achieved an average

threshold distance of within 5.13% of the optimum value,

at 80.6427 feet and 85 feet, respectively, and a success rate

at 95.0753%, which was 0.0048% higher than that achieved

in the first test. As such, we can see that the class actually

performs slightly better when the threshold distance does not

increase as the density increases. We primarily attributed this

to the decrease in distance between the optimal values for

each density and the initial value.

The second test case had the average suggested distance

within 5.28% of the optimum value, only slightly further

from it than the tests with no scaling and scaling propor-

tional to the square root of the density. Its success rate

also rose slightly to 95.0816%. We once again attributed

this difference to the increased period of time where the

suggested distance was lower than the optimum value, as

we did between the first and second tests. Based on theses

values, we determined that the class could run comparably

with scaling proportional to the density when compared to

our assumption of square root of density scaling.

The last of these tests faltered significantly, with the

average suggested threshold distance only getting within

77.93% of the optimum value, with the average at 135.598

and the optimum at 614.142. After reviewing the data, we

attributed this issue primarily to extremely high values that

rarely occurred but had a very high maximum threshold

distance, as they could increase the average optimum value

easily and the class would not collect enough data on them

to correctly determine an accurate value for the maximum

threshold distance. However, since the amount of time spent

under the optimum value increased, the success rate rose

slightly to 95.1014%.



D. Performance

As our class is designed to be employed in a mobile

network environment, it must be able to run on a system

while using only a small amount of processing power. As

such, when running our tests we also recorded how long it

took the tests to run to determine whether a smaller computer

would be able to run our class efficiently using live data.

Since we used test data that covered 44 intersections across

84 weeks, our test program had to run through 3696 times the

amount of data that we would expect a particular intersection

to encounter within a week. With this amount of data, each

of our tests managed to finish running within 30 minutes.

In addition, the algorithms for processing a line of data all

run in constant time, making our program run in O(n) time

when processing n data. As such, we can reasonably expect

a far slower computer to be able to appropriately handle live

data from a single intersection.

CONCLUSION

Our investigations found that under most circumstances

our class can approximate the threshold distance with a

reasonable degree of accuracy while maintaining a success

rate higher than 95 percent. However, our investigations

also showed that it will be beneficial to correctly adjust the

class for the network connection in order to optimize its

performance. However, even without optimizations, the class

was shown to able to perform with only a small detriment

to its performance. For future work we plan on running

instances of this class at multiple intersections to collect

real world data, then we plan on using that data to create a

better informed program that can perform more optimally for

the conditions of the intersection. Additionally, we plan on

developing a cluster head selection and distribution algorithm

to use with this class that would allow it to be used as a full

clustering algorithm.

REFERENCES

[1] V. Goswami, S. K. Verma and V. Singh, ”A novel hybrid GA-ACO

based clustering algorithm for VANET,” 2017 3rd International Con-

ference on Advances in Computing,Communication & Automation

(ICACCA) (Fall), Dehradun, 2017, pp. 1-6.

[2] O. S. Oubbati, A. Lakas, N. Lagraa and M. B. Yagoubi, ”UVAR:

An intersection UAV-assisted VANET routing protocol,” 2016 IEEE

Wireless Communications and Networking Conference, Doha, 2016,

pp. 1-6.

[3] K. Liu and K. Niu, ”A hybrid relay node selection strategy for VANET

routing,” 2017 IEEE/CIC International Conference on Communica-

tions in China (ICCC), Qingdao, 2017, pp. 1-6.

[4] Gould, Phillip G., Anne B. Koehler, J. Keith Ord, Ralph D. Snyder,

Rob J. Hyndman, and Farshid Vahid-Araghi. ”Forecasting time series

with multiple seasonal patterns.” European Journal of Operational

Research 191, no. 1 (2008): 207-222.

[5] J. Gluck, H. S. Levinson, and V. Stover, Impacts of Access

Management Techniques, NCHRP Report 420, Transportation Re-

search Board, 1999; http://tools.ietf.org/wg/manet/draft-ietf- manet-

zone-zrp/draft-ietf-manet-zone-zrp-04.txt

[6] Y. Toor, P. Muhlethaler, A. Laouiti and A. D. La Fortelle, ”Vehicle

Ad Hoc networks: applications and related technical issues,” in IEEE

Communications Surveys & Tutorials, vol. 10, no. 3, pp. 74-88, Third

Quarter 2008.

[7] European project REACT, www.react-project.org

[8] U.S. Department of Transportation,

http://safety.fhwa.dot.gov/facts/road factsheet.htm

[9] European project PReVENT-Intersafe, http://www.prevent-

ip.org/en/prevent subprojects/intersection safety/intersafe

[10] B. Mourllion, Extension dun Systme de Perception Embar-qu Par

Communication, Application la Diminution du Risque Routier, Ph.D.

diss., Universit Paris 11 (Orsay), 2006

[11] R. Wakikawa et al., Design of Vehicle Network: Mobile Gate-way for

MANET and NEMO Converged Communication,Proc.2nd ACM Intl.

Wksp. Vehicular Ad Hoc Networks, ACM Press, 2005, pp. 8182

[12] T. Ernst, The Information Technology Era of the Vehicular Industry,

SIGCOMM Comput. Commun. Rev., vol. 36, no. 2, 2006, pp. 4952.

[13] V. Devarapalli et al., Network Mobility (NEMO), RFC 3963, Jan.

2005; http://ietf.org/rfc/rfc3963.tx

[14] V. Namboodiri, M. Agarwal, and L. Gao, A Study on the Feasibility of

Mobile Gateways for Vehicular Ad-Hoc Net-works, Proc. VANET04,

2004.

[15] J. Zhao and G. Cao, ”VADD: Vehicle-Assisted Data Delivery in

Vehicular Ad Hoc Networks,” in IEEE Transactions on Vehicular

Technology, vol. 57, no. 3, pp. 1910-1922, May 2008.

[16] S. S. Alwakeel, H. A. Altwaijry and A. B. Prasetijo, ”A multiple

classifiers broadcast protocol for VANET,” 2017 4th International

Conference on Information Technology, Computer, and Electrical

Engineering (ICITACEE), Semarang, 2017, pp. 35-40.

[17] E. Limouchi and I. Mahgoub, ”BEFLAB: Bandwidth efficient fuzzy

logic-assisted broadcast for VANET,” 2016 IEEE Symposium Series

on Computational Intelligence (SSCI), Athens, 2016, pp. 1-8.

[18] C. Wu, S. Ohzahata, Y. Ji and T. Kato, ”Joint MAC and Network

Layer Control for VANET Broadcast Communications Considering

End-to-End Latency,” 2014 IEEE 28th International Conference on

Advanced Information Networking and Applications, Victoria, BC,

2014, pp. 689-696.

[19] F. Goudarzi, H. Asgari and H. S. Al-Raweshidy, ”Traffic-Aware

VANET Routing for City EnvironmentsA Protocol Based on Ant

Colony Optimization,” in IEEE Systems Journal.

[20] A. Abuashour and M. Kadoch, ”An Intersection Dynamic VANET

Routing Protocol for a Grid Scenario,” 2017 IEEE 5th International

Conference on Future Internet of Things and Cloud (FiCloud), Prague,

2017, pp. 25-31.

[21] A. Hamza Cherif, K. Boussetta, G. Diaz and D. Fedoua, ”Improving

the performances of geographic VDTN routing protocols,” 2017 16th

Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net),

Budva, 2017, pp. 1-5.

[22] S. H. Ahmed, Hyunwoo Kang and Dongkyun Kim, ”Vehicular Delay

Tolerant Network (VDTN): Routing perspectives,” 2015 12th An-

nual IEEE Consumer Communications and Networking Conference

(CCNC), Las Vegas, NV, 2015, pp. 898-903.

[23] J. J. P. C. Rodrigues et al., ”The Vehicular Delay-Tolerant Networks

(VDTN) Euro-NF joint research project,” 2011 7th EURO-NGI Con-

ference on Next Generation Internet Networks, Kaiserslautern, 2011,

pp. 1-2.

[24] J. N. Isento et al., ”FTP@VDTN A file transfer application for Vehic-

ular Delay-Tolerant Networks,” 2011 IEEE EUROCON - International

Conference on Computer as a Tool, Lisbon, 2011, pp. 1-4.

[25] Kafsi, Mohamed, Panos Papadimitratos, Olivier Dousse, Tansu Alp-

can, and J-P. Hubaux. ”VANET connectivity analysis.” arXiv preprint

arXiv:0912.5527 (2009).

[26] Chandrasekharamenon, Neelakantan Pattathil, and Babu AnchareV.

”Connectivity analysis of one-dimensional vehicular ad hoc networks

in fading channels.” EURASIP Journal on Wireless Communications

and Networking 2012, no. 1 (2012): 1.

[27] X. Jin, W. Su and W. Yan, ”Quantitative Analysis of the VANET

Connectivity: Theory and Application,” 2011 IEEE 73rd Vehicular

Technology Conference (VTC Spring), Budapest, 2011, pp. 1-5.

[28] R. S. Tomar and M. S. Sharma, ”Connectivity analysis in vehicular

communication for safe transportation systems,” 2017 Conference on

Information and Communication Technology (CICT), Gwalior, 2017,

pp. 1-5.

[29] A. Ahizoune, A. Hafid, ”A new stability based clustering algorithm

(SBCA) for VANETs”, Proc. IEEE 37th Conf. Local Comput. Netw.

Workshops (LCN Workshops), pp. 843-847, 2012.

[30] R. T. Goonewardene, F. H. Ali, E. Stipidis, ”Robust mobility adaptive

clustering scheme with support for geographic routing for vehicular

ad hoc networks”, IET Intell. Transp. Syst., vol. 3, no. 2, pp. 148-158,

Jun. 2009.

[31] S.-T. Cheng, G.-J. Horng, C.-L. Chou, ”Using cellular automata to



form car society in vehicular ad hoc networks”, IEEE Trans. Intell.

Transp. Syst., vol. 12, no. 4, pp. 1374-1384, Dec. 2011.

[32] E. Dror, C. Avin, Z. Lotker, ”Fast randomized algorithm for 2-hops

clustering in vehicular ad-hoc networks”, Ad Hoc Netw., vol. 11, no.

7, pp. 2002-2015, 2013.

[33] C. Cooper, D. Franklin, M. Ros, F. Safaei and M. Abolhasan, ”A

Comparative Survey of VANET Clustering Techniques,” in IEEE

Communications Surveys & Tutorials, vol. 19, no. 1, pp. 657-681,

Firstquarter 2017.

[34] W. Liu, C.-C. Chiang, H.-K. Wu, C. Gerla, ”Routing in clustered

multihop mobile Wireless networks with fading channel”, Proc. IEEE

SICON, pp. 197-211, Apr. 1997.

[35] S. Basagni, ”Distributed clustering for ad hoc networks”, Proc. 4th Int.

Symp. Parallel Architectures Algorithms Netw. (ISPAN), pp. 310-315,

1999.

[36] R. Ghosh, S. Basagni, ”Mitigating the impact of node mobility on ad

hoc clustering”, Wireless Commun. Mobile Comput., vol. 8, no. 3, pp.

295-308, 2008.

[37] R. T. Goonewardene, F. H. Ali, E. Stipidis, ”Robust mobility adaptive

clustering scheme with support for geographic routing for vehicular

ad hoc networks”, IET Intell. Transp. Syst., vol. 3, no. 2, pp. 148-158,

Jun. 2009.

[38] L. Bononi, M. di Felice, ”A cross layered MAC and clustering scheme

for efficient broadcast in VANETs”, Proc. IEEE Int. Conf. Mobile Ad

hoc Sensor Syst. (MASS), pp. 1-8, Oct. 2007.

[39] R. A. Santos, R. M. Edwards, N. L. Seed, ”Inter vehicular data

exchange between fast moving road traffic using an ad-hoc cluster-

based location routing algorithm and 802.11b direct sequence spread

spectrum radio”, Proc. Post Grad. Netw. Conf., Apr. 2003.

[40] T. J. Kwon, M. Gerla, V. K. Varma, M. Barton, T. R. Hsing, ”Efficient

flooding with passive clustering-an overhead-free selective forward

mechanism for ad hoc/sensor networks”, Proc. IEEE, vol. 91, no. 8,

pp. 1210-1220, Aug. 2003.

[41] M. S. Almalag, S. Olariu, M. C. Weigle, ”TDMA cluster-based MAC

for VANETs (TC-MAC)”, Proc. IEEE Int. Symp. World Wireless

Mobile Multimedia Netw. (WoWMoM), pp. 1-6, Jun. 2012.

[42] Y. Gunter, B. Wiegel, H. P. Grossmann, ”Cluster-based medium access

scheme for VANETs”, Proc. IEEE Intell. Transp. Syst. Conf. (ITSC),

pp. 343-348, Sep. 2007.

[43] A. Daeinabi, A. G. P. Rahba, A. Khademzadeh, ”VWCA: An efficient

clustering algorithm in vehicular ad hoc networks”, J. Netw. Comput.

Appl., vol. 34, no. 1, pp. 207-222, 2011.

[44] N. Kumar, N. Chilamkurti, J. H. Park, ”ALCA: Agent learning-based

clustering algorithm in vehicular ad hoc networks”, Pers. Ubiquitous

Comput., vol. 17, no. 8, pp. 1683-1692, 2013.

[45] L. Zhang, H. El-Sayed, ”A novel cluster-based protocol for topology

discovery in vehicular ad hoc network”, Proc. Comput. Sci., vol. 10,

pp. 525-534, Aug. 2012.

[46] T. Taleb, A. Benslimane, K. B. Letaief, ”Toward an

effective risk-conscious and collaborative vehicular collision

avoidance system”, IEEE Trans. Veh. Technol., vol. 59,

no. 3, pp. 1474-1486, Mar. 2010, [online] Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5382585.

[47] T. Taleb, A. Benslimane, ”Design guidelines for a network architecture

integrating VANET with 3G & beyond networks”, Proc. IEEE Glob.

Telecommun. Conf. (GLOBECOM), pp. 1-5, Dec. 2010.

[48] A. Benslimane, T. Taleb, R. Sivaraj, ”Dynamic clustering-based adap-

tive mobile gateway management in integrated VANET3G heteroge-

neous wireless networks”, IEEE J. Sel. Areas Commun., vol. 29, no.

3, pp. 559-570, Mar. 2011.

[49] G. El Mouna Zhioua, N. Tabbane, H. Labiod, S. Tabbane, ”A fuzzy

multi-metric QoS-balancing gateway selection algorithm in a clustered

VANET to LTE advanced hybrid cellular network”, IEEE Trans. Veh.

Technol., vol. 64, no. 2, pp. 804-817, Feb. 2015.

[50] C. Cooper, D. Franklin, M. Ros, F. Safaei and M. Abolhasan, ”A

Comparative Survey of VANET Clustering Techniques,” in IEEE

Communications Surveys & Tutorials, vol. 19, no. 1, pp. 657-681,

Firstquarter 2017.


