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ABSTRACT

Long Range Dependent �LRD� network tra�c does
not behave like the tra�c generated by the Poisson
model or other Markovian models� The main di�er�
ence is that LRD tra�c increases queueing delays
due to the burstiness of the tra�c over many time
scales� LRD tra�c has been measured in di�erent
types and sizes of networks� for di�erent applications
�eg� WWW� and di�erent tra�c aggregations� Since
LRD behaviour is not rare nor isolated� accurate
characterization of LRD tra�c is very important in
order to predict performance and to allocate network
resources� The Hurst parameter is used to describe
the degree of LRD and the burstiness of the tra�c�
In this paper we analyze UCLA Computer Science
Department network tra�c traces and compute
their Hurst parameters� Queueing simulation is
used to study the impact of LRD and to determine
if the Hurst parameter accurately describes such
LRD� Our results show that the Hurst parameter is
not by itself an accurate predictor of the queueing
performance for a given LRD tra�c trace�

� INTRODUCTION

Accurate characterization of Internet tra�c is very
important for precise modeling and network design
decisions� Modeling of Internet tra�c is based on
the tra�c characteristics and the resulting models
often serve as input for simulations� The results of
simulations are used for a number of network design
decisions� For many years the Poisson model was
widely used to model Internet tra�c� but in the last
few years new characteristics have been discovered
in Internet tra�c� Long Range Dependence �LRD�
has been discovered in LANs �Willinger et al� 	

��

Leland et al� 	


�� WANs �Paxson and Floyd 	

��
and MANs �Willinger et al� 	


�� It has also been
discovered in di�erent services and applications�
Aggregate tra�c �Willinger et al� 	

�� Leland et
al� 	


�� World Wide Web �Crovella and Bestavros
	

�� Crovella and Bestavros 	

��� Variable�Bit�
Rate �VBR� video tra�c �Beran et al� 	

�� and
di�erent types of computer networks� Ethernet
�Willinger et al� 	

�� Leland et al� 	


�� ATM
�Willinger et al� 	


� and CCSN�SS
 �Du�y et al�
	

��� The tra�c with the LRD property is more
bursty than tra�c generated with the Poisson model�
The Poisson model is Short Range Dependent and
does not accurately model LRD tra�c �Paxson and
Floyd 	

��� In comparison to LRD tra�c� the use
of the Poisson model �or other Markovian models�
results in overly optimistic queueing performance�
The queue length distribution decays much more
slowly for LRD tra�c� The queueing delay rises
dramatically with increasing LRD �Erramilli et al�
	

�� and the Hurst parameter quanti�es this long
range dependence�

�Leland et al� 	


� compared a current model
�a compound Poisson process� with actual network
tra�c� They found that after aggregation over
the seconds time scale you will see a smoothed
tra�c with a compound Poisson process� But in
contrast real tra�c did not smooth out and is bursty
over many time scales �self�similar�� They argue
that the Hurst parameter quanti�es the degree of
self�similarity and can be used as a measure of the
burstiness of the tra�c �the higher the Hurst value
the burstier the aggregate tra�c��

Other researchers including �Crovella and
Bestavros 	

�� Crovella and Bestavros 	

��
have also found that the H value declines somewhat



when they use tra�c from less busy hours as com�
pared to busy hours� which is consistent with results
found by �Leland et al� 	


��

Based on the study of the fractional Brown�
ian motion model� Neidhardt and Wang discovered
a further complexity � that burstiness depends on
time scales �Neidhardt and Wang 	

��� When
comparing a high Hurst value process and a low
Hurst value process �assuming both processes are
exactly second�order self similar� the variance of
the two processes match at a unique time scale tm�
There are time scales tqi that are most relevant
for queueing the arrivals of process i� If for both
processes the queueing scales tqi are greater than
variance matching scale tm� then the higher Hurst
value process queue will result in worse queueing
performance� if they are both smaller than tm then
the lower Hurst value process queueing performance
is worse�

We used real tra�c traces as input to trace�driven
queueing simulations to examine the relationship
between the Hurst parameter and queueing perfor�
mance� We found some results similar to �Neidhardt
and Wang 	

�� in addition to some di�erent results�

When we compared a lower H parameter tra�c
with a higher H parameter tra�c we found that the
lower H parameter tra�c resulted in worse queueing
performance for all the di�erent time length tra�c
traces we used� We also showed that the Hurst
parameter can di�er for a given tra�c trace over
di�erent time lengths� This is signi�cant because
it reduces the importance of the Hurst parameter
and opens future research into new parameters and
models for LRD tra�c�

The rest of the paper is organized as follows�
Information about the computer network tra�c
traces used in this paper is presented in Section ��
The de�nition for Long Range Dependence is given
in Section �� Section � contains the de�nitions for
and generation of the time series used in this paper�
The computation of the Hurst parameter and a
discussion on the variance�time plot and examples
of its use in estimating the Hurst parameter with
UCLA network tra�c is covered in Section �� Section
� describes the queue simulator� The performance
of LRD tra�c in a queueing simulation in order to
determine the e�ectiveness of the Hurst parameter

in predicting the resulting queueing performance
is covered in Section 
� Lastly� in Section � we
summarize our �ndings�

� TRAFFIC TRACES

Department
 Servers

 Traffic
Measurement
   Host

 Off 
Campus
Gateway

UCLA Computer Science
Department

  UCLA
  FDDI
Backbone

Figure 	� UCLA CSD Measurement Connection�

Network tra�c traces were taken at UCLA Com�
puter Science Department �CSD� over a � week pe�
riod �Feb � March 	

��� Network tra�c information
was collected at a host running Tcpdump �Jacobson
et al� 	
�
�� This host was connected �via a special
link� to department servers and to the router that
connects the CSD to the FDDI backbone �see Figure
	�� The traces represent the network tra�c in the
Computer Science Department� The resulting out�
put was processed to obtain the format needed to
test for LRD �arrival time and packet length for each
packet�� Information for each tra�c trace obtained is
summarized in Tables 	 and �� Note that the �All� in
the trace name signi�es that it is an aggregate tra�c
trace�

Trace Date Start Duration�s� Arrivals
All	 ����
� 	pm 
����
� ������
All� �����
� 	�am ��	
��� 	������
All
 �����
� 
am ���
��	 �������
All� �����
� 	�pm 

���
� ������

Table 	� UCLA CSD Tra�c Trace Information�

Trace Total Bytes Bytes�Arriv Arriv�Sec
All	 ����	��E��� �
����� ����	
�
All� ����

�E��� 
������ �
��



All
 	������E��
 ������� ��	��
�
All� ����


E��� �
����� ����
��

Table �� UCLA CSD Tra�c Trace Information�



� SELF�SIMILAR AND LRD PROCESSES

Our approach is to de�ne LRD following the de��
nitions given in �Willinger et al� 	

�� Leland et al�
	


��

Let X � �Xt � t � �� 	� �� � � � � be a covariance
stationary stochastic process with mean �� variance
�� and autocorrelation function r�k�� k � �� Assume
r�k� is of the form

r�k� � k�� � as k �� �	�

where � � � � 	�

For each m�	����� � � � � let X�m� � �X
�m�
t � t �

	� �� �� � � � � denote the new covariance stationary time
series obtained by averaging the original seriesX over
non�overlapping blocks of size m� i�e��

X
�m�
t � �Xtm�m�� � � � ��Xtm��m� t � 	 ���

The process X is called �exactly� second�order self�
similar if for allm � 	� �� �� � � � � var�X�m�� � ��m��

and

r�m��k� � r�k�� k � � ���

The process X is called �asymptotically� second�
order self�similar if for all k large enough�

r�m��k�� r�k�� as m�� ���

The key property of this class of self similar
processes is the fact that the covariance does not
change under block aggegation and time scale
changes� The relationship between the Hurst pa�
rameter and � is H � 	 � ���� Note that here
	�� � H � 	� since � � � � 	� A self similar
process with 	�� � H � 	 �i�e�� � � 	� is long
range dependent �LRD�� Since � � 	 the functionP

k r�k� �
P

r�� � �� By contrast� a short�range
dependent process �eg� Poisson Process� has fast
decaying autocorrelation function �i�e�� � 	 	��
hence�

P
k r�k� � �� The Hurst parameter is thus

a key indicator of LRD behavior� One immediate
consequence of LRD behavior is that the tra�c
exhibits the same burstiness across many time scales
see Figure �� Having introduced the de�nitions
for the Hurst parameter and LRD� in the following
section we de�ne some important time series and
their relationship to the original tra�c trace�

Observations Made in 100 Seconds

T
ot

al
 B

yt
es

0 50000 100000 150000 200000 250000

0
50

00
10

00
0

15
00

0
20

00
0

Observations Made in 10 Seconds

T
ot

al
 B

yt
es

0 5000 10000 15000 20000 25000

0
50

00
10

00
0

15
00

0

Observations Made in 1 Second

T
ot

al
 B

yt
es

0 500 1000 1500 2000 2500

20
00

40
00

60
00

80
00

Observations Made in 0.1 Second

T
ot

al
 B

yt
es

0 50 100 150 200 250

20
00

40
00

60
00

Figure �� Bursty Tra�c Over Many Time Scales�
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Figure �� Time Series Diagrams�

� TIME SERIES DEFINITION

This paper examines the correspondence between
the queueing performance of self�similar tra�c
and the Hurst value� The original tra�c trace is
characterized by two variables� time �of arrival of a
packet� and length �of the packet�� From this trace�
time series with only one variable must be generated
in order to estimate the Hurst parameter for this
variable� There are several methods for generating
such single variable time series from data traces�
Researchers from Bellcore �Willinger et al� 	

��
Leland et al� 	


� have proposed the fTra�c Bg
and fTra�c Pg time series� We derive the same two
synthetic tra�c traces �fTra�c Pg and fTra�c Bg�
from the real trace to see the relationship between
the Hurst value and queueing performance� The
resulting two traces have comparable magnitude�
Queueing experiments can be driven by them and
produce comparable results� We will examine the
degree of self�similarity of these two traces by calcu�
lating their Hurst values and observing the queueing
behavior when both traces are fed into a FIFO queue�

The relationship of the two time series from



the packet arrival times and packet lengths is
displayed in Figure �� Each of the two time series
captures di�erent aspects of the tra�c trace� To
compute fTra�c Bg and fTra�c Pg� we choose a
time interval �t which typically contains between
� and 	� arrivals �see Figure ��� Within non�
overlapping time intervals of size �t we sum the
number of bytes Bi arriving in each interval �ti and
get the time series fTra�c Bg � fBi� i � 	� �� �� � � �g�
Next� let P ave be the mean packet size computed
over the entire duration of the experiment� Consider
the new tra�c sequence where the actual packet size
is replaced by the mean packet size P ave � Within
non�overlapping time intervals of size �t we sum the
number of bytes P i arriving in each interval �ti to
get a time series fTra�c Pg � fP i� i � 	� �� �� � � �g�

� HURST PARAMETER ESTIMATION

A	 Estimation of the Hurst parameter

We present two di�erent views of the Hurst pa�
rameter� one is a visual view �variance�time plot��
the other is a computed view �see next subsection��
To visually estimate the Hurst parameter� we plot
var�X�m�� as a function ofm� The variance�time plot
draws the variance vs� m in a log�log scale� which
shows the slowly decaying variance of a self�similar
series� If the input tra�c has the LRD property� the
curve should be linear �for large m� with slope larger
than �	� The �Reference� line on the variance�time
plot �Figure �� represents the slope of the line of
� � 	 � that is var�X�m�� � m��� then H � 	���
Any line with a slope less than � and greater than
this reference line exhibits LRD and has an H pa�
rameter value 	�� � H � 	� The variance�time plots
for fTra�c Bg and fTra�c Pg for all four CSD traces
are shown in Figure �� The captions represent the
curves top down on the graph� By inspection of the
variance�time plots� it is apparent that both curves
on each plot have an H value greater than 	�� and
less than 	� demonstrating that all the curves show
the property of long range dependence�

B	 Computation of the Hurst parameter

The Hurst parameter was also computed using
Least�Squares Curve Fitting �Trivedi 	
���� leading
to an analytic equation for the curve� The result�
ing equation is in the form of y � ��x � b where
�� is the slope of the curve� The Hurst value is
then computed using the relation H � 	� ���� Ta�
ble � contains the computed Hurst values of fTra�c
Bg and fTra�c Pg for each of the four tra�c traces

used in this paper� Notice that all four computed
fTra�c PgHurst values are greater than their respec�
tive computed fTra�c Bg values� Simulation is used
in the next section to show the relationship between
the Hurst parameter and queueing performance�
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Figure �� Variance�time plots for the � traces�

Tra�c Trace fTra�c Bg fTra�c Pg
All	 ��
��� ��
���
All� ���

	 ��
��

All
 ��
�
� ����
�
All� ��
��� ��

�	

Table �� Hurst values for the � traces�


 THE QUEUE SIMULATOR

In this section� we introduce our queuing sim�
ulation which uses real tra�c traces and then in
the next section we discuss the simulation results�
Previous studies on the queueing simulation are
either driven by real tra�c traces or by tra�c
models� As was done in many other modeling
approaches� a single parameter �Hurst parameter� is
used to describe the self�similar property of network
tra�c� Our paper di�ers from previous studies�
however� in that we discuss the relationship between
the Hurst parameter and queueing performance� We
use UCLA tra�c� which exhibits the long range
dependency property� to drive a queueing simulation�
It is well known that LRD tra�c is burstier than
the traditional Poisson model� and thus requires a
much larger queue size� By observing the in�uence
of such tra�c on the queueing system� we will see



that the Hurst parameter alone does not su�ciently
quantify the LRD property� nor does it characterize
the burstiness of real tra�c�

The queueing system utilized in the simula�
tion has a single server� in�nite bu�er size and FIFO
discipline� Experiments were run with �ve di�erent
server utilizations ����� ���� ��
� ��
� ��

�� Only the
experiments with utilizations ����� ��
� are reported
here� The queueing simulation is driven by fTra�c
Bg and fTra�c Pg sequences� which in turn were
derived from real traces�

� EXPERIMENTAL RESULTS

In the experiments� we measure the complemen�
tary distribution of the queue length� Let Q�t� be
the number of bytes in the queue over time� In the
plots we show P�Q�t� 	 x�� the probability that
the queue length is greater than x� in log scale�
The longer the tail of the distribution� the burstier
the tra�c� The discovery by �Neidhardt and Wang
	

�� of a crosssover point tm where the variance
of the two processes match in the very small time
scales is not that important to researchers since they
are more interested in larger time scales and the tail
of the distribution�

In order to provide a reference� Figure �
shows the combined queue length distributions for
the M�M�	 and LRD All	 trace for queueing system
with utilizations ���� ��� and ��
� The M�M�	 queue�
ing model uses the average interarrival time �����	

sec� and average packet size ��
� bytes� extracted
from the trace All	� In addition� Figure � shows the
simulation results obtained by applying fTra�c Bg
derived from trace All	 to the FIFO queue �see also
Figure � �a��� Figure � clearly shows that there is
a large di�erence �� orders of magnitude� in queue
length distributions between the M�M�	 queue and
the real tra�c queue �corresponding to fTra�c
Bg� and as a result the Poisson process can not be
used as a substitute for the real LRD tra�c� The
disparity between Poisson and Self Similar queues is
revealed also by the analytical models� In particular�
for the Poisson process �M�M�	 queue� the P�Q�t�
	 x� � e��x �Beran et al� 	

�� but for the self

similar process the P�Q�t� 	 x� � e��x
���H

�Beran
et al� 	

�� Erramilli et al� 	

���

A	 Queue length distributions for the whole

traces	
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and the LRD All	 trace�
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Figure �� Queueing experiment of each trace with ��

utilization�

As con�rmed by simulation� the burstier the traf�
�c� the longer the tail of queue length distribution�
However� our experiments show that a larger H value
may not indicate a greater burstiness and a larger
queue� Several queueing experiments and discussions
of the queueing simulation results provide evidence
from several di�erent points of view to support such
an argument�

First� let us look at the behavior of the fTra�c
Bg and fTra�c Pg synthetic traces which were
derived from the same tra�c trace� Consider trace
All	 �Figure � �a�� for example� The computed
Hurst parameters show that the H values of Tra�c B
���
���� and P ���
���� of trace All	 �Table �� are
very close� But the tail of fTra�c Bg is much longer



than that of fTra�c Pg� This suggests that fTra�c
Bg is much burstier than fTra�c Pg� Moreover�
trace All
 in Figure � �c� and Figure � �c� shows
that while fTra�c Pg has a greater H value than
fTra�c Bg �i�e� ����
� vs� ��
�
��� the tail of the
queue length distribution of fTra�c Pg is shorter
than that of fTra�c Bg� These �inversions� support
our claim that the value of the Hurst parameter does
not accurately re�ect the relative burstiness between
fTra�c Bg and fTra�c Pg from the same trace�

Tra�c Trace fTra�c Bg fTra�c Pg
All
 Seg	 ��
	
	 ��
��

All
 Seg� ��
��
 ��

	�
All
 Seg� ��
��� ��

	�
All
 Seg� ��
�
� ��

��
All
 ��
�
� ����
�

Table �� Hurst values for the four ALL
 segments�
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Figure 
� Queueing experiment of Segments from
trace All
 with ��
 utilization�

B	 Queue length distributions for trace seg�

ments	

More support of our argument comes from the sim�
ulation experiments with segments from the same
trace� Previous experiments on segments of the orig�
inal trace were done by �Abry and Veitch 	

�� to
check if the Hurst parameter was constant across the
segments in a test to see if the whole trace was sta�
tionary� Our segmented experiments show that parts
of the entire trace perform di�erently from the origi�
nal whole one� The original trace All
 is divided into
four sections� Each section is treated as an individ�
ual trace� We derive fTra�c Pg and fTra�c Bg for
each trace� estimate their H values� and feed them
into the queueing system� The utilization is kept at

� percent� The results given in Table � shows that
the fTra�c Pg and fTra�c Bg segments have H val�
ues similar to each other� However� when the results

of queueing experiments are considered �Figure 
��
strong di�erences between queue length distributions
among the four segments are observed� For exam�
ple� fTra�c Bg of Segment� has a heavier tail than
the other segments� but it doesn�t have the largest H
value� So the queueing performance is di�erent for
segments with similar H parameters� Furthermore�
the tails of these distributions are much lighter than
the tail of the queue length distribution of the entire
trace All
 �see Figure � �c��� That is� the largest
queue length of the four segments of fTra�c Bg is
near 	�MBytes �Figure 
�a��� but the probability of
a queue length larger than ��MByte is still near 	�
percent for fTra�c Bg of the entire trace �Figure �
�c��� However� the value of the Hurst parameter for
All
 is smaller than that of the segments� In other
words the Hurst value can vary with di�erent time
scales�
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Figure �� Queueing experiment of each trace with ���
utilization�

C	 Queue length distributions for di�erent uti�

lizations	

The queue length distributions of the traces when
the system is at �� percent load is shown in Figure
�� The distribution of queue bu�er size decays faster
than in 
� percent utilization� Just as �Erramilli et
al� 	

��� showed in their paper� generally� a tra�c
load of ��� is near the �knee� of the delay�utilization
curve� When the utilization is greater than ���� the
queueing delay increases very fast� From the queue
length distribution� this point can be clearly seen�
where the tail of a heavy tra�c load �Figure ��
is much longer than that of a light load �Figure
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Figure 
� Queueing experiments for trace All	 with
���� ��
 and ��

 utilizations�

��� Therefore� our discussions have focused on the
queuing performance under heavy load ���
�� which
is of most interest� For the sake of completeness�
however� we have compared the All	 simulation
�both fTra�c Pg and fTra�c Bg � for loads ���� ��
�
��

 �see Figure 
�� Queueing lengths for fTra�c
Bg are longer than for fTra�c Pg for each tra�c
trace run at each utilization ����� ���� ��
� ��
� ��

��

All these comparisons lead us to the same
conclusion� that the Hurst parameter is not an
accurate indicator of the tra�c burstiness and
queueing performance� Our queueing experiments
clearly show that the Hurst parameter alone is not
su�cient to predict the queueing performance�


 CONCLUSION

Real tra�c traces were used for the simulation
and the results presented in this paper have shown
that the H parameter is not a consistent� monotonic
indicator of queueing perfomance� For example� our
results show that the fTra�c Bg and fTra�c Pg
time series derived from the same trace are such that
fTra�c Pg has a greater Hurst value than fTra�c
Bg� i�e� fTra�c Pg should have a longer queue
length distribution� Yet� the queue length distri�
butions show an �inversion� since fTra�c Bg causes
longer queues than fTra�c Pg� These contradictory
relations hold true for all four tra�c traces� Namely�
the value of the Hurst parameter does not fully re�ect
the relative queueing performance of fTra�c Bg and
fTra�c Pg� even though they were from the same

trace� Moreover� the di�erences in queueing perfor�
mance among segments and between the segments
and the entire trace con�rm the inaccuracy of the H
value in predicting queueing performance� The main
conclusion of this paper is that the H parameter alone
is not su�cient to fully describe the LRD property of
a tra�c source and to predict its queueing impact�
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