
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL 1

ProtoGENI, A Prototype GENI Under Security
Vulnerabilities: An Experiment-Based

Security Study
Dawei Li, Xiaoyan Hong, Member, IEEE, and Darwin Witt, Student Member, IEEE

Abstract—ProtoGENI is one of the prototype implementations
of global environment for network innovations (GENI). Pro-
toGENI proposes and executes the GENI control framework,
including resource management and allocation for authenticated
and authorized experimenters. Security and inevitably are the
most important concerns in the whole development process. In
this paper, we study and evaluate its security vulnerabilities ac-
cording to GENI’s security goals. We analyze the threat model of
ProtoGENI and categorize four broad classes of attacks. Based on
the role of an active experimenter, we demonstrate experiments as
proof of the concept that each class of attacks can be successfully
launched using common open source network tools. We also
present analysis and experiments that show perspectives on the
potential risks from an external user. Furthermore, we discuss the
feasibility and possible defense strategies on ProtoGENI security
with respect to our preliminary experiments and potential future
directions. Our contribution lies in examining known vulnerabili-
ties without requiring sophisticated experiments while remaining
effective. We have reported our findings to the ProtoGENI Team.
Our work indicates that the solutions have been deployed. This
paper validates that experiment-based vulnerability exploration
is necessary.

Index Terms—GENI security, global environment for network
innovations (GENI) experiments, ProtoGENI, vulnerability.

I. Introduction

AN INFRASTRUCTURE like the global environment for
network innovations (GENI), a virtual laboratory for at-

scale networking experimentation [2], [7], has distinguishable
features that bear significant complexities and challenge its de-
velopment and operation. This global network research testbed
consists of a large amount of computing and networking
resources of various types. Some examples include server
racks, switches, open-flow routers, VLAN backbones, wireless
devices, sensor devices, and mobile devices. These devices

Manuscript received October 9, 2011; revised March 14, 2012; accepted
July 26, 2012. This work was supported in part by the BBN/NSF Contract
Project 1783.

D. Li was with the University of Alabama, Tuscaloosa, AL 35487 USA. He
is now with the Department of Computer Science and Engineering, Lehigh
University, Bethlehem, PA 18015 USA (e-mail: dal312@cse.lehigh.edu).

X. Hong is with the Department of Computer Science, University of
Alabama, Tuscaloosa, AL 35487 USA (e-mail: xhong@ua.edu).

D. Witt was with the University of Alabama, Tuscaloosa, AL 35487
USA. He is now with the Human Centered Design and Engineering
Program, University of Washington, Seattle, WA 98195 USA (e-mail:
dcwitt@crimson.ua.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSYST.2012.2221959

are geographically distributed and federated through control
frameworks. GENI allows networking experimentation to be
conducted at an Internet scale using a large variety of network
devices and technologies, both current and forthcoming.

One critical issue for such an at-scale infrastructure is
security. The primary goals of GENI security are to avoid
being abused to conduct illegal activities or being abused as
a launch pad for attacks, and to ensure that the availability
of services is not compromised by attacks [3]. It is extremely
challenging to achieve these security goals due to many system
features, including distributed ownership of the resources,
distributed users groups, deep programmability of the infras-
tructure resources, super flexibility of configurability of the
virtualized resources, large-scale connectivity to the Internet,
and large geographic span. In addition, the vast variety of
research experiments that can be conducted at GENI could
produce network behaviors in an unexpected pattern, thus
making the detection of an anomaly difficult.

To understand the necessity of the rigid vulnerability anal-
ysis of GENI (in our case, ProtoGENI), we consider an
experimenter’s approach to explore the current implementation
to identify potential system vulnerabilities. Our results will
help understand security requirements, and will provide the
development team with the possible suggestions and solutions
for those vulnerabilities [5]. We hope that the experiments
will assist in building a more secure research infrastructure.
Our experimentation was performed in conjunction with re-
lated personnel and under the supervision of the applicable
authorities. Potentially harmful experiments were limited to
our own testbed slices and machines.

Our current work focuses on the ProtoGENI control frame-
work [4]. ProtoGENI is built based on the network research
infrastructure of Emulab, UT [1]. It provides researchers with a
wide range of networking environments under which they can
control conditions and securely conduct repeatable research
experiments. ProtoGENI can be regarded both as a hardware
facility providing computing and networking resources and
as a software defining control framework that can control,
manage, and dictate policies for user authentication, resource
allocation, and communication between different parties.

In this paper, we introduce the threat model of ProtoGENI
(and GENI) and propose four broad classes of attacks that can
violate the security goals of GENI. For each class, we describe
the network experiments and the exposed vulnerabilities. Our

1932-8184/$31.00 c© 2013 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE SYSTEMS JOURNAL

experiments mimic the attacking behaviors of data plane to
control plane, data plane to data plane, data plane to Internet,
and Internet to ProtoGENI. We analyze and explain the
security limitations in the current ProtoGENI implementations
associated with these experiments. The results of our exper-
iments show that the harm can be in two large categories,
namely, the possibility of acting as a launch pad and the
possibility of being compromised for availability. In this paper,
a few necessary conditions for performing these attacks are
presented to understand the feasibility of those threats along
with the suggestions on the possible defense strategies. The
outcomes after reporting our findings to the development teams
are introduced with the associated experiments.

Our experiments are proof of concept because no sophisti-
cated experiments are required and can be used to show the
potential harmful consequence, when an insider or an outsider
is present. As such, GENI’s security goals can be compro-
mised. The contribution of this paper is to show that the known
vulnerabilities, which affected other systems and networks, can
be effective against ProtoGENI. In fact, we have performed
more experiments as attacks. In this paper, we summarize
and present experiments that can indeed raise cautions in the
development of ProtoGENI. We have reported these findings
to the corresponding GENI development teams and suggested
them possible defense strategies. This paper validates that the
experiment-based vulnerability exploration is necessary.

The remainder of this paper will start with a brief introduc-
tion on ProtoGENI in Section II, and then the threat model
and our methodology are given in Section III. Our attacking
experiments of different classes are presented in Sections IV–
VII. We discuss and summarize our findings and defense
strategies in Section VIII. Related work is presented in Section
IX. Conclusions are given in Section X.

II. Background

A. ProtoGENI Control Framework

ProtoGENI is a prototype implementation and deployment
of GENI functions. We introduce the key components of
ProtoGENI facility and functioning software entities. They
describe the management and the usage of ProtoGENI.

1) Clearing house: center for registration and authorization.
2) Component manager: resource provider, managing re-

sources at a particular location.
3) Slice: container for resources, providing a piece of live

virtualized network testbed for an experiment; it can
cross many resource providers.

4) Slice authority: managing the slices, authenticating users
to slices.

5) Sliver: computing resources granted to a slice.
6) RSpec: resource specification, the mechanism used for

advertising, requesting, and describing the resources.
7) Vnode: virtual node, sharing with other slices in the

current sliver through splitting a physical node using vir-
tualization. Current ProtoGENI realizes Vnode through
OpenVZ.

8) VLAN: VLAN links to connect otherwise separated
experimental nodes.

B. ProtoGENI Security Architecture

GENI relies heavily on the existing authentication, au-
thorization, and security protocols to allow secure Internet-
scale management, operation, and communication [9]. One
mechanism that GENI uses is to implement a hierarchy of
authorization of individuals and experiment through public
key infrastructure (PKI). Such a mechanism is well developed
through clearing house and interactions between component
manager and slice authority. The credentials will be used
and passed around, when an experimenter requests and uses
slices and slivers. GENI grants a component manager the
authority to start and manage slices locally. The nature of
the GENI security architecture will assume that common
security practices, such as updating mission-critical software
on hardware components, will be in place. In addition, the
researcher should not have to assume trust of the nodes,
network environments, and other end users of the GENI
network, nor should it be necessary for the components or
component managers to trust the rest of the GENI control
framework to which it is connected. Furthermore, the GENI
control framework itself uses the existing Internet protocols
for managements and operations with mechanisms to ensure
that this control framework is securely constructed.

Due to GENI’s proposed size and method for growth via
federation, the pre-existing secure protocols, such as corpo-
rate and government PKI and authenticated identities, would
be far too difficult to maintain. This complexity is due to
the fact that different authorities have different authorization
schema to manage such separate systems. Currently, it is also
under investigation and implementation for the GENI to use
attribute-based identities and access control [12]. With this
latter scheme, the aspects of the principal’s attributes may
change as the principal interacts with a federated system.

The early GENI developers’ approach toward the security
goal catches the following essences: 1) identity management
including credential generation and delegation; 2) emergency
stop procedures being ready to shut down some experiments or
the entire GENI infrastructure; and 3) security best practices
at different aggregates (operating organizations with physical
resources to offer).

C. ProtoGENI Authorization

Authorization in the ProtoGENI system is initiated by the
exchange of credentials that facilitate resource authorization
and access control by aggregates. The PKI that is used to
authenticate principals provides all of the keys and other
structures to sign and verify credentials during this process.
The steps include: 1) a user obtains an SSL certificate and
passphrase for connecting to the ProtoGENI portal, and 2)
then obtains an SSH key for remote access to the experimental
nodes in the sliver. After this initial getting ready phase, a user
can repeatedly use the established credentials to perform net-
work experiments (the execution phase). For each experiment,
a user interacts through scripts with the ProtoGENI control
framework (clearing house, slice authority, and component
manager) using the credentials for resource allocation as well
[4].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: PROTOGENI, A PROTOTYPE GENI UNDER SECURITY VULNERABILITIES 3

III. Threat Model

GENI security architecture and policy are defined in a few
documents [3], [9]. These documents describe a general threat
model for GENI, which is independent of any single control
framework. The design and development of ProtoGENI’s
security architecture closely follow the general model. Here,
we describe the threat model based on the ProtoGENI control
framework. The threat model is illustrated as rings in Fig. 1.
The inner ring is comprised of threats from ProtoGENI control
framework (including control manager, slice authority, clearing
house, etc.) and system administrators. Threats from this ring
can damage the whole system severely. However, the control
framework and system administrators are the most trusted
entities in a system. The middle ring includes threats from the
experimenters and their authorized slices as well as from the
software running within the slices. The outermost ring depicts
threats from the outsiders (of GENI) residing in the Internet.
This is because a ProtoGENI slice is connected to the Internet
through the experimenter’s local machine, when it is active.

A. Classes of Attacks

An experimenter processes all the credentials and related
access rights. It is attractive for an attacker to seize the control
of an experimenter or his slices by stealing the credentials from
a lab machine or through Trojan Horse. It is also possible that
a legitimate experiment may go wrong without being noticed
by the owner. When such situations occur, the experimenter
can act as an inside attacker. Our analysis of the ProtoGENI
control framework suggests that three classes of attacks can
be performed as an insider. First, a ProtoGENI experimenter
can use his authorized slice to attack the control framework
and ProtoGENI infrastructure. Second, if the isolation between
experimental slices is not guaranteed, an experimenter can
disrupt another user slice intentionally or by chance. Third,
GENI experiments may attack the outside world, i.e., the
Internet either accidentally or maliciously. Moreover, as an
experimenter, one is subject to the external attacks launched
from the Internet.

In this paper, we consider ProtoGENI administrators and
control framework software trustworthy. Using experiments,
we follow the above four broad classes of attacks to address
the security issue.

When the implementation of the GENI security architecture
is fully in place, it will be empowered by the strong anomaly
detection capability. Although it is too early to conclude that
these approaches would be sufficient, let alone that the devel-
opment procedure itself needs additional safeguards (see TUF
project securing software update [14]). In addition, large-scale
experimental testbeds need additional security mechanisms,
for example, the DETER testbed [8]. Similarly, it is vital
to investigate the ProtoGENI implementation and explore its
vulnerabilities to deploy more defense solutions.

B. Methodology

We study the feasibility of each class of attacks by ana-
lyzing the implementation of the control framework and then
by performing experiments to verify the feasibility analysis.

Fig. 1. ProtoGENI ring threat model revised from [3].

When conducting these experiments, we always play two roles,
both as an attacker and as a victim experimenter. We use
two experiment slices. One slice acts as a launch pad for the
attacking experiments, while the other slice acts as a normal
experiment slice. We observe the normal experiment slice to
check results when the attacking experiments are performed
in the other slice.

We use common network testing tools for our experiments,
such as ping and iperf. Ping helps us to test the availability
of ProtoGENI resources, while iperf acts as a network traffic
generator. Both tools also report measurements on delay, hop
count, and throughput. We also use the software netwox [11],
an open source network tool set, to perform network attacks,
such as packet sniffing and spoofing. stress is another system
workload generator that can impose a configurable amount
of CPU, memory I/O, and disk stress on the system, which
is useful when we investigate the implementation of network
virtualization.

In the next four sections, we describe our experiments ac-
cording to the four attacking classes and analyze the associated
security issues.

IV. From User Slices to Control Framework

An experimenter has the privilege and opportunity of us-
ing authorized ProtoGENI slices. If compromised, the ex-
perimenter can act as an inside attacker and generate great
damages. One direct hit could be the control framework. Here,
we describe our experiments to show that damage can cause
the denial of ProtoGENI’s services to the users.

A. Feasibility Study

ProtoGENI facility can be viewed as two separate planes:
control plane and data (experimental) plane. The data plane
contains user slices and this is where the experiments exist.
The experiments are configured according to the network
topology defined in RSpecs. The control plane is a separate
network that configures and interacts with the data plane to
support the experiments. It also allows users to access the
slices from outside of ProtoGENI, usually through an Internet
SSH connection. The architecture is shown in Fig. 2. In this

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE SYSTEMS JOURNAL

Fig. 2. ProtoGENI control plane and data plane.

architecture, all the experimental nodes in the data plane
are connected to the control router in the control LAN. All
the nodes have publicly accessible IP addresses. Thus, each
experimental node has multiple network interfaces, including
one interface connecting to the same LAN with the control
router; one to Internet, while the other interface is connected
to other experimental nodes in the data plan according to the
topology of experiment.

Connecting a large number of available nodes within a
single control LAN has potential problems. Once a malicious
user obtains the control of one experiment node, he can easily
launch attacks disturbing connections that the other experiment
uses to connect to the same control router and the Internet.
Those victim experimenters may find their experimental nodes
unavailable or unaccessible. Attacking experiments described
here are LAN specific, such as ARP cache poisoning attack
[10]. The attack target is the LAN of the control network.
Each node in the LAN has an ARP cache storing entries that
map the IP addresses to the corresponding MAC addresses of
other nodes interfaces. The entries of the IP-to-MAC address
mapping can be altered by spoofed ARP packets sent from
an attacker, known as the ARP cache poisoning attack. An
attacker can send spoofed ARP packets either to control router
or to the experiment nodes, as illustrated in Fig. 3.

In our experiments, we use netwox to launch ARP cache
poisoning attacks to terminate connection between the control
router and an experiment node. The victim experiment node
can be a node in use or an available resource for allocation.
As a result, the physical experiment node will be disconnected
or not be available for allocation. One challenge is a soft state
of ARP cache. Thus, an attack has a way to sustain a damage
over a longer time. In order to deal with the expiration of the
spoofed ARP entry, we use a shell script to repeatedly send
spoofed packets using the netwox command (Fig. 4).

B. DoS of the Connection to Control Router

Here, the victim experiment node is a node available for
resource request and allocation. We create two slices with
names experiment1 and experiment2, respectively. The slice
experiment1 is alive with a single node node1 (physical node
pcwf146) that has netwox installed for conducting attacks;
experiment2 is a pending slice for acquiring the specified node
pcwf142 as its experimental resource. There are two ARP
cache poisoning methods to achieve the DOS attack.

Fig. 3. ARP cache poisoning.

Fig. 4. Repeated ARP cache poisoning.

1) Poisoning the ARP Cache of the Victim Node: We use
the netwox tool no. 33 to poison pcwf142’s ARP cache about
the control router, i.e., the tool will send a fake MAC address
of the control router in an ARP message to pcwf142. This
method is illustrated as the #2 action in Fig. 3. We would
like to modify the MAC address of the control router to
0C : 0C : 0C : 0C : 0C : 0C in pcwf142’s ARP cache.
In order to verify the attacking result, we try to acquire
pcwf142 for experiment2 to see whether the resource is still
available without any exception. If the attack was successful,
the victim experiment node pcwf142 would lose its connection
to the control router and hence this resource will no longer be
available.

We observed that the experiment2 still acquired the pcwf142
as its experiment node. We checked the ARP cache of pcwf142
and found that the ARP entry for the control router was
not changed. This is because the ProtoGENI facility sets
the ARP entry of the control router to be a static entry at
the experimental nodes. This protects ProtoGENI from being
attacked by this specific DOS attack. The result suggests that
modifying an experimental node does not effectively launch a
DOS attack.

2) Poisoning the ARP Cache of the Control Router: In this
experiment, we exploit the control router directly by poisoning
its ARP entry about the experiment node pcwf142. If this
experiment is successful, then the attack achieves the same
goal for cutting connection between the control router and
experiment node. The users would still not be able to acquire
desired resources. The experiment scenario is shown in Fig. 3
as the #1 action. We use the same two slices experiment1 and
experiment2, respectively.

We use the netwox to poison the control router’s ARP cache
by spoofing a faked MAC address for pcwf142. We would like
to modify the MAC address of pcwf142 to 0C : 0C : 0C : 0C :
0C : 0C in the control router’s ARP cache. Then, we verify the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: PROTOGENI, A PROTOTYPE GENI UNDER SECURITY VULNERABILITIES 5

Fig. 5. Connection failure.

result by trying to acquire pcwf142 for experiment2 to see if
the resource is still available without any exception. This time,
the result is inclined to the attacker and pcwf142 is no longer
available. At this stage, we cannot check the ARP cache in
the control router to directly verify results. But, we observed
a series of warning and error messages in the users local
interface indicating that pcwf142 cannot be used. Examples
include “pcwf142 appears wedged; it has been 6 min since it
was rebooted,” “node−reboot−reboot−node: pcwf142 appears
dead; will power cycle,” “ERROR : node−reboot − reboot:
Powercyle failed for pcwf142,” and “pcwf142 may be down.”
This experiment shows that the denial-of-service attack is
possible.

In summary, we have shown that denial-of-service attacks
on a ProtoGENI node through ARP cache poisoning can be
performed by modifying the control router’s entry about the
victim node. If such an attack was successful, the victim
experiment node would lose its connection to the control router
and hence would no longer be available. In our experiment
setting, users’ request for experiment2 would not be satisfied.
Furthermore, without knowing a specific physical node, an
attacker can poison the ARP table at the control router with a
brute force method of trying all the IP addresses in the address
space.

C. Links in Virtual Topology

Here, we examine whether or not the virtual links in the
data plane are isolated from the physical links in the control
network. In other words, will a failure of a physical link affect
the virtual links? Again, two slices are created, the slice vlan is
a regular slice with two experiment nodes, left and right, and
a link connecting them; and the slice attack is the attacking
slice with a single node with netwox installed.

The attacker launches an ARP cache poisoning attack to
disconnect the normal node left in the active slice vlan from
the control router, using the method described earlier. As a
result, the local machine of the normal user cannot access the
left via SSH (Fig. 5). Thus, the DOS attack to the connection
of the slice in use is successful.

We then use the normal node right to ping the node left
through the experimental virtual topology. The result shows
that the left is still reachable by right (Fig. 6). The results
of the experiment suggest that the experimental topology
in ProtoGENI is actually an LAN composed of experiment
nodes with separate real network interfaces through dedicated
experimental switches. The failure of the control network
connection will not affect the experimental topology.

Fig. 6. VLAN is still connected after attack.

TABLE I

Allocated Resources

Slice Name Exp. Node Name Host Name
test1 shared1 pc175.emulab.net
test1 shared2 pc172.emulab.net
test2 shared1 pc172.emulab.net
test2 shared2 pc175.emulab.net
test3 shared1 pc263.emulab.net
test3 shared2 pc102.emulab.net

V. Break the Isolation Between Slices

Slices share resources in the data plane. Virtualization keeps
them separated and isolated. Here, we show experiments that
explore issues related to the resource isolation.

A. Feasibility Study

Virtualization in GENI makes it possible to share resources
among many users while being able to meet their computing
and networking requirements. However, the virtualized envi-
ronment should be developed carefully. Bugs within the sys-
tem could lead to violations in isolation. The first experiment
here shows an instance, where an exposed entry exists for
another user to send traffic across the slices.

Another key consideration of virtualization is the appro-
priate distribution of computing and network resources such
as CPU, memory, and bandwidth, when allocated to different
slices. Potential defects in the virtualization technology could
permit a user to interrupt the experiments of others with whom
he shares the resources, be it on purpose or not.

B. Explore Bugs in Virtualization

This experiment shows that a defect in implementation can
lead to traffic being sent cross slices. We create three slices
with names test1, test2, and test3, respectively. Each slice has
the same topology of two Vnodes named shared1 and shared2,
and a link of bandwidth 100 Mb/s connecting them. The two
slices test1 and test2 also share the same physical nodes. The
tool iperf is installed on every node. All the acquired resources
are summarized in Table I.

In our first attempt, only one iperf server is running on slice
test1 at the node shared1. From the nodes shared2 of both
slices test1 and test2, we connect to the server shared1 with
the following command: iperf − c shared1. We expect each
shared2 to connect to shared1 in its own slice. However, what
we observed from the screen of the iperf server (shared1 at
test1) is that both the clients are connected to the same server
even though they are not from the same slice, i.e., the nodes
can communicate across slices.

In Fig. 7, we illustrate our experiment with the screen
captures of four nodes. The left side shows the iperf server

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE SYSTEMS JOURNAL

Fig. 7. Cross-slice experiment (I).

Fig. 8. Cross-slice experiment (II).

and client in test1, and the right side shows those in test2.
Fig. 7 shows that the server shared1 in test1 (slice1892) (the
upper left terminal) is connected by the clients with ports in the
sequence of (numbers in the red circle) 43589, 53256, 53257,
and 43590, respectively. On the other hand, the first client
shared2 in tests1 (slice1892, the left lower terminal) connects
to the server with the ports (in the blue circle): 43589, 43590,
and so on. The second client shared2 in test2 (slice1893, the
right lower terminal) connects to the server with the ports
(in the green circle): 53256, 53257, and so on. These results
suggest that the problem could be due to the fact that both
the slices (test1 and test2) share the same physical resources
(pc175 and pc172).

We then try to see whether the issue occurs to the nonshar-
ing slices. We perform the same experiment with the slices
test1 and test3, which do not share physical resources. We
obtained the same result, as shown in Fig. 8.

To understand the extent of this issue, we examined many
resource allocation combinations, including changing Vnode
to a normal node, connecting to the iperf server with the IP
address, and using different node names for different slices
(no matter whether it is a Vnode or a normal node). These
experiments do not show this problem. Thus, we can say that
the cross-slice communications would happen only when the
nodes are Vnodes with the same experiment name defined in
the RSpec, and additionally the same names are used in iperf
as a server. The instance seems difficult to encounter due to
the rare conditions that lead to it. However, the chances are
much higher, if ProtoGENI users opt to use default names

(very likely) that are usually provided in tutorials and the Flack
web interface.

This experiment showcased that bugs in implementation of
the control framework could result in interference and inter-
ruption among experiments, and could also generate abnormal
traffic. For the latter, it is also difficult to detect. If the bug was
exploited by an attacker, he could send malicious traffic to a
normal ProtoGENI experiment and can harm the experiment
result. Upon this finding, we have reported findings to the
developer team at the University of Utah. The problem has
been solved and our follow-up experiments have validated that
this isolation problem does no longer exist.

C. Explore Computing Resource Isolation

The virtualization technology adopted by ProtoGENI is able
to allocate dedicated computing resources for many slices.
Each slice should not be affected or exhausted by another slice
that acquires a virtual machine in the same physical machine.
We test this function through the following experiment.

We create two slices with names vnode1 for a normal slice,
and vnode2 for the attacker’s slice. Each slice has a single
Vnode. The two slices are located at the same physical node
PC263.emulab.net. The attacker installs the tool stress and
uses it to generate excessive usage of CPU and memory in
his virtual machine to exhaust the computing resources. If the
attack is successful, the computing resources such as CPU and
memory of the normal slice vnode1 will be reduced.

In the normal slice vnode1, we use the linux command top
to show the CPU and memory usage before the attack . The
result indicates that CPU is free with 0.0%us and 1087232 kB
free memory. The attacker runs the stress software in his
Vnode with the command

stress − cpu 2 − vm 1 − vm − bytes 256M − timeout 30s.

This command imposes a load by specifying two CPU-
bound processes and one memory allocator process requir-
ing 256 MB memory size. With the command running, we
observed changes in the resource usage by the normal slice’s
Vnode. It shows that CPU is still free without being interfered,
but the free memory decreases to 8 33 900 kB. The result
suggests that the processor is isolated and dedicated for a
Vnode, but the memory is interfered by the shared slice.

The above experiment shows that the virtualization technol-
ogy used in ProtoGENI will allocate a dedicated CPU resource
to a particular Vnode. However, the physical memory resource
is not isolated among different Vnodes residing in the same
physical machine. Attackers can use this drawback to exhaust
the memory resource so that the performance of normal
ProtoGENI experiments will degrade, or the experiments will
be disabled.

VI. From Slices to Internet

ProtoGENI slices are designed with features that are conve-
nient for experimentation. Some of the examples include easy
access though the Internet and file uploading and downloading
from local machines. These features, if exploited by a com-
promised slice, could help launch attacks from the slices to
hosts or servers residing in the Internet.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: PROTOGENI, A PROTOTYPE GENI UNDER SECURITY VULNERABILITIES 7

TABLE II

Bandwidth Test Result

Traffic Direction and Throughput
ProtoGENI Node to Lab PC 91.7 Mb/s
Lab PC to ProtoGENI Node 54.7 Mb/s

A. Feasibility Study

An experiment node in ProtoGENI has a public IP address
for convenient access through the Internet. The potential
vulnerability is quite obvious. If ProtoGENI does not provide
any precaution (in fact, it does), a malicious user can use
ProtoGENI slices to launch attacks to the Internet. Such
attacks can also be launched from multiple nodes or aggregates
from different geographic locations within GENI. Here, we
perform a proof-of-concept experiment to show the possibility
of such attacks.

In addition, an experiment node in ProtoGENI can upload
files to a file server or host residing in the Internet (or
download) through a typical SSH connection using the public
IP address. Such a file transfer will not alter the file itself.
This feature helps upload users’ experiment data to local
machines for analysis. However, as an inside attacker, this
could be abused to send unknown viruses or worms to the
Internet. Thus, a malware uploaded or downloaded from a
ProtoGENI node can remain undetected, and can be invoked
with a simple click on an executable code. To prevent the
attack, one approach is to separate the click and execution. A
proposed method is to encrypt data retrieved from ProtoGENI
so that it cannot be executed automatically by a simple click
[8].

B. Throughput Test

In this experiment, we verify the achievable throughput
on the connection between a ProtoGENI node and a local
host. This verification will help create an understanding of
the feasibility of launching a flooding attack. We use a single
ProtoGENI node and a PC from our laboratory. Both hosts
have iperf installed to test the connectivity and bandwidth.
The ProtoGENI node has an ethernet card with 1000 Mb/s,
and our laboratory PC has an ethernet card of 100 Mb/s. Since
the laboratory PC has only 100 Mb/s, the traffic is limited by
this bottle-neck link. In the client host, we connect the iperf
server by running

iperf − c ServerIP − t 30.

The t flag is to set test time at 30 s. The collected achievable
throughput data are listed in Table II. (Throughput is the
average over 40 experiments.)

Table II shows that the traffic sent from a ProtoGENI node
to the laboratory node uses most of the laboratory node’s
bandwidth, which makes it possible for the laboratory node
to be a victim (with lower bandwidth) of a flooding attack. In
contrast, the throughput from the laboratory node to the Proto-
GENI node is far less than the ProtoGENI node’s bandwidth,
and is even less than its own bandwidth of 100 Mb/s. The
result suggests that sending data from a ProtoGENI node with

Fig. 9. Ping flood result.

a larger bandwidth has potential to overwhelm a laboratory
node with a low bandwidth in the Internet side.

C. Flooding Attack

Most of the ProtoGENI nodes enjoy high bandwidth con-
nections with the Internet. This benefit could potentially help
launch a flood attack on a low bandwidth node outside Proto-
GENI. Here, we showcase a very simple flooding attack using
ping flood, i.e., the attacker overwhelms the victim with ping
packets as the attacker sends more traffic than the bandwidth
of the victim. In this experiment, we use a laptop connected
through Wi-Fi 802.11 g to further reduce the bandwidth of the
laboratory node. The bit rate for 802.11 g connection is at most
54 Mb/s. The experiment node in ProtoGENI (still 1000 Mb/s)
launches the ping flood attack with the command

ping − f − s 65000 VictimIP.

The f flag is the flood mode of ping with zero intervals and the
s flag is to set the ping packet size (maximum 65 507 bytes).

We monitor the consequences of the experiment through
Internet applications running on the victim laptop. As a result,
we observed that several network applications are discon-
nected (e.g., Skype, IM). We were unable to open a web
page (Fig. 9) either. This result proves that attackers can use
ProtoGENI resource to attack the Internet.

This simple case implies more devastating extensions. For
example, the attacker can launch a DDoS attack from many
ProtoGENI nodes and, maybe, from different component man-
agers using ping flood to the victim node even though it may
have a large bandwidth (e.g., 1 Gb/s Ethernet connect), or a
DDoS attack can be launched to attack many nodes in the
Internet.

The flooding attack can easily be monitored at both ends
through fire-walls. When detected it should be stopped. An
automatic intrusion prevention system can react to such events
quickly and can potentially control the damage. At the time of
experiments, such a mechanism was not installed. It should be
easy for ProtoGENI administrators to track the vast volume of
traffic to identify the attacker. In our case, the post warning
was given by the ProtoGENI team. Currently, a fire-wall is
installed.

VII. Attempts From Outside of ProtoGENI

Nevertheless, ProtoGENI (and GENI) could be an attractive
target for attackers from outside of the GENI infrastructure.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE SYSTEMS JOURNAL

Fig. 10. Scanned open port when iperf server is running.

Fig. 11. Iperf connection summary.

Many ways could be used to explore the vulnerabilities of Pro-
toGENI. Here, our experiments show how common methods
might succeed.

A. Feasibility Study

With publicly available IP addresses, attackers residing in
the Internet can easily take these ProtoGENI nodes as targets
for attack. Open ports, for example, can be the first thing to
attempt. In addition, an open port identifies a running service.
This can be used by attackers to identify and compromise
certain kinds of services. In ProtoGENI (and GENI), many
services are offered to facilitate experimentation, for example,
measurement software. This kind of software will open ports
for the measurement traffic and data collection. These ports
can be scanned by an attacker from the Internet if not filtered
by a fire-wall.

B. Exposed Port Detection

In this experiment, we examine whether open ports can be
detected from outside. We start with iperf and then examine
a real ProtoGENI instrumentation tool Instools. For both the
experiments, we run the software on the ProtoGENI nodes and
scan the nodes from a laboratory machine through the Internet.
The slice has two nodes exclusive-0 (pc57.emulab.net) and
exclusive-1 (pc75.emulab.net). The node exclusive-0 runs an
iperf server with default port 5001, and exclusive-1 acts as the
iperf client that sends packets to the iperf server.

In the laboratory PC, we use software network mapper
(Nmap) to scan the iperf server running on the ProtoGENI
node pc57.emulab.net. Fig. 10 shows that there are three open
ports detected: port 22 for SSH connection, port 5001 for
iperf connection, and port 32769 for filenet-rpc. Knowing that
port 5001 is open, we send packets to the iperf server from
our laboratory and succeed (Fig. 11). Another note is about
port 32 769 for filenet-rpc. It is known to be vulnerable by
malformed requests to cause denial of service. Port 32769
also has vulnerabilities caused by trojans and remote code
execution.

Then, we installed the software Instools on the two Proto-
GENI nodes. As required by the Instools, an additional node

TABLE III

Open Port Scan Result

Node TCP ports UDP ports
Experiment node 22 (SSH) none
Measurement node 22 (SSH), 80 (http), none

443(https), 3306 (mysql)

(pc243.emulab.net) is added to the slice to monitor the traffic
between the two ProtoGENI nodes and collect data. Note that
the added node has a public IP address. When the service is
running, we use Nmap to scan one of the normal experiment
nodes and the monitoring node from a laboratory PC. Our
observation is summarized in Table III. It is clear that Instool
uses more open ports at its service monitoring node. Those
ports are common well-known ports.

Through experiments, we discovered four issues.
1) Some ports should only open to the data plane, yet, they

have opened to the Internet.
2) Some exposed ports can accept traffic from the Internet.

For both cases, countermeasures must be built to verify
the legitimate of the traffic.

3) Some well-known vulnerability-prone ports are open to
outside. Although they are currently secure with the
updated versions, potential cautions must be taken in
place to prevent old versions from being loaded into an
experimenter node.

4) Our experiment shows that the ProtoGENI fire-wall can
filter some important ports (as shown in Fig. 10, 154
filtered ports), but there are still ports exposed and some
may have vulnerabilities such as port 32769, and some
are default open ports.

In summary, our experiments do not intend to show that these
open ports caused or will cause security threats to ProtoGENI,
rather they suggest that more ports can be exposed outside
of ProtoGENI like these. They offer possibly the first step
for attackers to start their attempts by identifying the running
services with vulnerability.

VIII. Summary of Findings and Suggestions

The results of our experiments show that we are able to
launch attacks, following the threat model with the privileges
of an authorized user. Specifically, as an inside attacker,
it is possible to compromise the availability of ProtoGENI
resources and disturb another running experiment and the
Internet. Meanwhile, as an outside attacker, it is also possible
to invade the ProtoGENI facility through publicly accessible
IP addresses. Although the experiments are not sophisticated,
they act as proofs of concept for the threat model.

To summarize, we question to what extent can such an
attack cause troubles to ProtoGENI or GENI? First, we discuss
the minimum conditions in order to launch the attacks to the
control network as an inside attacker. Three conditions are
identified: 1) using an active slice; 2) learning the environment;
and 3) using a tool. In terms of condition 1, the possibility of
compromising an active slice is similar to the case of using a
local host such as the safety of SSH credentials, the security

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: PROTOGENI, A PROTOTYPE GENI UNDER SECURITY VULNERABILITIES 9

of the communication channel or the operations system. This
is because an experimenter will obtain certificates and keys for
experiments, and all the experiments are accessed through a
local host. In dealing with condition 2, our other experiments
have explored several ways in which we are able to learn
the names of the physical nodes and also to learn the IP
addresses of the entire testbed facilities. This is because the
name space and IP address space are maintained with easy-
to-follow rules for the simplicity of management, which is
desired for ProtoGENI. Thus, an attacker can easily guess or
probe (e.g., through ping) for the needed information. This
helps further learn the MAC address when an IP address is
known. A node can then learn all the MAC addresses. Thus,
condition 2 is not a barrier to an attacker. Condition 3 is not
a barrier as well because open-source tools can be found on
the Internet. After all, condition 1 is the minimum condition
for launching the attacks. This suggests that the security of
authorization and authentication of ProtoGENI is critical.

For an outside attacker, our preliminary port scan exper-
iment has suggested a few ways that could possibly be the
first step toward starting the attempts. Cautions must be taken
when more services and user contributed software are used
in ProtoGENI, if they open ports for communications. Future
work can also focus on developing new solutions.

Based on our experiments, we present the following analysis
and suggestions.

1) The exposure of the control plane to the data plane
leaves attackers (malicious ProtoGENI users) the chance
of launching ARP cache poisoning attacks, which could
result in failures in experimentation. To prevent and
detect malicious ARP packets, several strategies can
be considered for the control routers and experimental
nodes, such as static ARP tables, firewalls, separate dae-
mon tools like ARPON and ARPwatch, and hardware
solutions. Currently, static ARP tables are regarded as
an easy implementation by the ProtoGENI team. Our
follow-up experiments were not successful, which shows
that the defense is in place.

2) Isolation of slices has to deal with many aspects of the
implementations in virtualization technology. The GENI
component providers and control framework develop-
ment team could leverage a few selected virtualization
technologies in this regard. Our experiments show the
case of OpenVZ, where the CPU is well isolated, but not
memory sharing. The problem can be mitigated theoret-
ically by using other VM technologies, such as Xen, or
by setting the memory isolation of OpenVZ manually.
The problem of network traffic isolation caused by
bugs in control software would be hard to find. Our
experiences are rather sporadic. The occurrence could
be rare as well. Systematic maintenance can serve as a
precaution.

3) The ProtoGENI architecture uses publicly accessible
IP addresses, which is likely to leave chances for
attackers from the Internet. It will be important to have
a mechanism in place that would allow open ports
only for the experiment nodes belonging to the same
slice, but not to the rest. Another possible solution is

to place the whole system behind a VPN or enforce
more strict firewalls. For example, the Emulab testbed
of Testbed@TWIST [24] requires VPN access before
connecting to experimental nodes through SSH. In ad-
dition, SSH connections are the major way to operate
and control the ProtoGENI experiment nodes. The SSH
credentials are stored at users’ local hosts. If the creden-
tial is stolen from the local machine (the Internet side),
damage could be large (satisfying condition 1, so as to
act as an insider). Thus, compared to access through a
VPN, ProtoGENI’s access security is weaker.

4) We have shown that malicious experimenters can attack
the Internet servers or hosts from active slices with
plenty of handy resources. The feasibility of such attacks
is based on: 1) the traffic monitoring capability of
ProtoGENI, and 2) the amount of resources that the
slice owns if concerning DOS attack or flooding attack.
Traffic monitoring at firewalls can help greatly deflect
such attacks. Currently, the ProtoGENI facility has the
capacities built. On the other hand, for the file transfer
function, an existing prevention approach is to encrypt
data retrieved from the ProtoGENI before transfer. This
will prevent the innocent user from directly invoking an
executable file immediately after clicking [8].

IX. Related Work

A similar federated testbed infrastructure is DETER. DE-
TER is designed for medium-scale repeatable experiments in
computer security [8]. The testbed is built as an Emulab-
based infrastructure. Thus, experiences with DETER can help
in ProtoGENI development. DETER includes several mech-
anisms to deal with threats, such as monitoring the control
network, placing fire-walls, and physically separating experi-
mental networks from the control network to prevent packets
from being routed outside one’s experiment. However, GENI
infrastructure is more complex than DETER, with different us-
age scenarios and a large variety of resources and virtualization
techniques.

Data plane to control plane attacks have been reported for
the Internet. In [23], the authors used a distributed denial of
service attack in the data plane to generate a surge of BGP
updates. When BGP sessions are carefully chosen, the surge
of updates will surpass the computational capacity of affected
routers, crippling the control plane’s ability to make routing
decisions. However, in ProtoGENI, the data plane and control
plane are built differently from the Internet. Typically, both
planes in ProtoGENI use the same physical media but the
data plane is a virtualized network, while these two planes
are separated in terms of their traffic but are over the same
physical Internet.

The impact of GENI’s uniqueness on its security has raised
significant attention. A good reference on GENI security can
be found through the Workshop on GENI and Security [16].
Two questions related to this paper are: what is GENI security,
and what security support services GENI must provide as a
federated network? A wider effort deals with the security of
GENI, including resource management, monitoring, privacy,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE SYSTEMS JOURNAL

architecture design, and so on. Security requirements on iden-
tification, credencialing, delegation, accountability, privacy,
and human and policy aspects are discussed. In addition,
different requirements from the stakeholders and the users are
discussed. The current GENI security architecture and security
related development projects largely reflect the outcomes of
the workshop [9]. In Sections II-B and III, we have introduced
its approach and threat model. The work presented in this
paper also helps achieve one of the goals of the workshop “to
ensure that the security issues are considered properly during
its development.”

There are several security-related projects that contribute to
achieve the security goals of GENI. GENI security architecture
is described in the Toolkit project [3], [9]. It includes the threat
model for GENI. Our work provides a proof-of-concept study
for the threat model. Moreover, we perform our experiments
with new categories of internal and external attacks. This helps
the developing team to prioritize their defense. The overall
safeguards are realized through the GENI meta-operations
center (GMOC) and several monitoring mechanisms. GMOC’s
role in GENI security is emergency stop. It manages and
coordinates the stop and/or containment of GENI resources
among all GENI projects in the case of an urgent request, such
as the incidents of interference or resource exhaustion caused
either on purpose or accidentally. The HiveMind project [6]
uses software agents to observe and collect communications
traffic in and out of a host to detect the effect of network-borne
attacks.

There are several measurement tools to help users to better
understand their experiment performance and results. Some of
them also help administrators to detect abnormal experiment
traffic. GMOC will be ready to receive such feedback in
the decision of emergency stop. Each of these tools offers
unique features for the users to select based on their need,
for example, MeasurementSystem [18] (database attached),
LAMP [19] (extensible storage), ScalableMonitoring [20] (ac-
tive measurement), Instools [21] (passive measurements), and
OnTimeMeasure [22] (a large set of tools). ScalableMonitoring
and OnTimeMeasure include anomaly detection. The Shad-
owNet [17] is another tool that provides meso-scale measure-
ment on a per-slice basis. A user will be allowed to control its
measurement infrastructure at backbone routers. However, the
purpose of the work presented in this paper is different. Also,
it is important to perform the experiment-based vulnerability
exploration so that our findings can provide feedback to the
development teams during the current development stage. Our
future work can consider the monitoring capability of GENI.

X. Conclusion

In this paper, we described the ProtoGENI threat model and
identified four broad classes of attacks that may challenge
ProtoGENI security. With the opportunity of both being an
internal attacker and an external user, we performed sev-
eral proof-of-concept experiments to validate the hypothesis
of a few vulnerabilities. For each of the four classes, we
analyzed the feasibility according to the ProtoGENI system
architecture and described our findings. The results indicated

potential vulnerabilities in ProtoGENI. Our experiments are
not sophisticated, but they are effective, partly because this
is still the development stage. This paper included potential
prevention and improvement approaches. More important, our
follow-up experiments showed that solutions were deployed.
The presented work suggested that it was necessary to perform
further analysis on the current developments and to investigate
overall GENI security.

References

[1] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” in Proc. 5th Symp.
OSDI, Dec. 2002, pp. 255–270.

[2] GENI Project Office and BBN Technologies. (2010, Jun. 3). GENI
Global Environment for Network Innovations Spiral 2 Overview [On-
line]. Available: http://groups.geni.net/geni/attachment/wiki/SpiralTwo/
GENIS2Ovrvw060310.pdf

[3] GENI Project Office and BBN Technologies. (2010, Mar. 15).
GENI Global Environment for Network Innovations Spiral 2
Security Plan [Online]. Available: http://groups.geni.net/geni/wiki/
SpiralTwoSecurityPlans

[4] ProtoGENI. (2009, Nov.) [Online]. Available: http://www.protogeni.net/
trac/protogeni

[5] X. Hong, F. Hu, and Y. Xiao. (2009, Sep.). GENI Spiral Two project:
GENI Experiments for Traffic Capture Capabilities and Security Re-
quirement Analysis [Online]. Available: http://groups.geni.net/geni/wiki/
ExptsSecurityAnalysis.

[6] S. Peisert. (2009, Sep.). GENI Spiral Two Project: The Hive Mind:
Applying a Distributed Security Sensor Network to GENI [Online].
Available: http://groups.geni.net/geni/wiki/HiveMind

[7] GENI: Exploring Networks of the Future. (2009, Sep.) [Online]. Avail-
able: http://www.geni.net.

[8] T. Benzel, R. Branden, D. Kim, C. Neuman, A. Joseph, K. Sklower,
R. Ostrenga, and S. Schwab, “Design, deployment, and use of the
DETER testbed,” in Proc. DETER Community Workshop Cyber Security
Experimentation Test, Aug. 2007, pp. 1–8.

[9] GENI Security Architecture. (2009, Oct.) [Online]. Available: http:
//groups.geni.net/geni/wiki/GENISecurity

[10] D. Li and X. Hong, “Practical exploitation on system vulnerability of
protoGENI,” in Proc. 49th ACM Southeast Conf., Mar. 2011, pp. 104–
114.

[11] Netwox. (2010, Feb.) [Online]. Available: http://ntwox.sourceforge.net/
[12] S. Schwab. (2009, Sep.). GENI Spiral Two Project: Distributed Identity

and Authorization Mechanisms [Online]. Available: http://groups.geni.
net/geni/wiki/ABAC.

[13] D. Li, X. Hong, and J. Bowman, “Evaluation of security vulnerabilities
by using ProtoGENI as a launchpad,” in Proc. IEEE Globecom, Dec.
2011, pp. 5–9.

[14] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine, “Survivable
key compromise in software update systems,” in Proc. ACM Comput.
Commun. Security Conf., Oct. 2010, pp. 61–72.

[15] GMOC, GENI Meta-Operations Center. (2010, May) [Online]. Avail-
able: http://groups.geni.net/geni/wiki/GENIMetaOps.

[16] M. Bishop. (2009, Aug. 15). Report on the Workshop on GENI and Secu-
rity [Online]. Available: http://seclab.cs.ucdavis.edu/meetings/genisec/

[17] ShadowNet: A ShadowBox-Based ProtoGENI Instrumentation and Mea-
surement Infrastructure. (2011, Mar.) [Online]. Available: http://groups.
geni.net/geni/wiki/Shadow

[18] MeasurementSystem: Instrumentation and Measurement for GENI.
(2011, Mar.) [Online]. Available: http://groups.geni.net/geni/wiki/
MeasurementSystem

[19] Leveraging and Abstracting Measurements With perfSONAR (LAMP).
(2011, Mar.) [Online]. Available: http://groups.geni.net/geni/wiki/
LAMP

[20] Scalable, Extensible, and Safe Monitoring of GENI. (2011, Mar.) [On-
line]. Available: http://groups.geni.net/geni/wiki/ScalableMonitoring

[21] INSTOOLS: Instrumentation Tools for a GENI Prototype.
(2011, Mar.) [Online]. Available: http://groups.geni.net/geni/wiki/
InstrumentationTools

[22] OnTimeMeasue: Centralized and Distributed Measurement Orchestra-
tion Software. (2011, Mar.) [Online]. Available: https://gmoc-db.grnoc.
iu.edu

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: PROTOGENI, A PROTOTYPE GENI UNDER SECURITY VULNERABILITIES 11

[23] M. Schuchard, A. Mohaisen, D. Kune, N. Hopper, Y. Kim, and E.
Vasserman, “Losing control of the internet: using the data plane to attack
the control plane,” in Proc. CCS, Oct. 2010, pp. 726–728.

[24] Taiwan Information Security Center (TestbedTWIST). (2011, Nov.)
[Online]. Available: http://testbed.ncku.edu.tw

Dawei Li received the B.S. degree in software engi-
neering from Beihang University, Beijing, China, in
2009, and the M.S. degree in computer science from
the University of Alabama, Tuscaloosa, in 2011. He
is currently pursuing the Ph.D. degree in computer
science with the Department of Computer Science
and Engineering, Lehigh University, Bethlehem, PA.

His current research interests include information
systems, cloud computing, and mobile software test-
ing.

Xiaoyan Hong (M’00) received the Ph.D. degree in
computer science from the University of California,
Los Angeles, in 2003.

She is currently an Associate Professor with the
Department of Computer Science, University of Al-
abama, Tuscaloosa. Her current research interests
include mobile and wireless networks, challenged
networks, vehicle networks, mobility modeling, and
the future Internet.

Darwin Witt (S’09) received the B.S. degree in
computer science from the University of Alabama,
Tuscaloosa, in 2012. He is currently pursuing the
M.S. degree with the Human Centered Design and
Engineering Program, University of Washington,
Seattle.

His current research interests include the design
and engineering of complex socio-technological sys-
tems, combining aspects of human–computer in-
teraction, interface design, and systems theory to
develop a deeper understanding of how to design

technological systems that could meet the needs of their sociological and
technological environments.

