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Abstract—In recent years, Open Flow is becoming a popular
network architecture. It can provide fine-grained monitor to the
flows in the network. The separation of control plane and data
plane makes it flexible. However, to the best of our knowledge,
most OpenFlow protocols are designed for wired networks. And
the switch state and controller bottleneck are still major issues
in OpenFlow network. In this paper, we first proposed a wireless
OpenFlow based Cognitive Radio network. In order to solve the
channel selection issue in CRN, we introduce the Hierarchical
Dirichlet Process(HDP) model to sense and classify the wireless
channel. To reduce the state of switch, we use wildcard rule
scheme. In addition, an algorithm is proposed in the paper to
further quench the requests to the controller. The simulation
results show that our proposed CMQ algorithm with information
from neighbors outperforms the conventional CMQ algorithm in
throughput and packet delay performance.

I. INTRODUCTION

In recent years, Open Flow[1] is becoming a popular
network architecture. As more and more users starts to join
the conventional Internet, the drawbacks of the conventional
networks are now gradually appearing. OpenFlow network
provides us a brand new sight to the development of networks.
This architecture separates the control plane and data plane
from the hardware level(physically). OpenFlow has plenty
of benefit compare to other network structures. Firstly, the
control plane and data plane are decoupled, this means more
flexible networks can be figure out with customized rules in the
network. Secondly, OpenFlow provides us a new platform to
design and test network protocols. Researchers could test new
protocols in a real network environment. Thirdly, in OpenFlow
architecture networks we could monitor flow traffic statistics.
This fine-grained monitoring of flows enables us to better
understanding the network protocols and scheme we applied.

Typically, the control plane is made up by the networking
device named controller, which is the key part in OpenFlow
architecture. The controller knows the overall topology of
the network it manages. In addition, it figures out the path
needed by routers and switches. When data plane devices have
problems with the packets dealing. They will ask the controller
for help. The major work for the data plane devices is relatively
simple compared to that of controller. Routers and switches
are responsible for executing the rule made by controllers and

forwarding datagram in the network.
However, there are still some challenges for OpenFlow

architecture both in control plane and data plane. In data plane,
one of the most challenging issue is the memory capacity
requirements. As the network is growing lager, the data plane
devices have to store more rules to handle the packets in the
complicated network. The rules and other dynamic flow tables
occupy TCAMs(Ternary Content Addressable Memory) in the
devices. The TCAMs are precious and expensive. Therefore
minimizing the usage of the storage is necessary for the data
plane.

In this paper, we first modeled a complete wireless network
architecture based on OpenFlow and Cognitive Radio Net-
works(CRN). The CRN is designed by FCC to improve the
frequency utility efficiency by occupying the channel which
the licensed user released. We employ the wildcard rule[2] to
reduce the TCAM usage of the data plane devices. In CRN, a
HDP model is applied to sense and classify the channel into
different groups. Then we proposed an algorithm to reduce the
number of request to the controller. In the proposed algorithm,
we not only record the source-destination pairs, but also collect
information from neighbors in order to reduce the request
times. The simulation results show that our proposed algorithm
improves the throughput and reduces the average packet delay
of the network.

The rest of the paper is organizing as follows: In Section
2, we go over some of the related researches. The system
design is proposed in section 3. We first introduce the network
architecture and then explain the wireless wildcard rule. In
section 4, we propose and analyze the controller bottleneck
problem within the system. The Control Message Quench-
ing(CMQ) algorithm with information from neighbors and
its enhances version are provided in section 5. Section 6
shows the simulation results of channel selection and CMQ
algorithms. Section 7 is the conclusion.

II. RELATED WORK

There are plenty of research papers related to OpenFlow
networks. Tie Luo in [3] proposed the CMQ algorithm. The
algorithm could not only be applied to wired network, but
also in sensor openflow network[7]. Min Lan proposed the



DIFNE [9] system to solve the issues related to the rule of
data forwarding in the data plane. The author in [5] proposed
DeveFlow to devolve the control function back to switches.
Other researches including enhance the OpenFlow scalability
includes [11] and [12].

III. SYSTEM DESIGN

In this paper, the network system is CRN-based Wireless
Mesh Networks. As we mentioned above, nowadays the
wireless frequency resources are becoming more and more
intense because the number of users is increasing. Also, the
we demand higher transmission data rate and better quality
of service(QoS). Cognitive Radio Network is a great idea to
solve this problem. Here we employ CRN based WMN as
our proposed scenario. Meanwhile, OpenFlow is a network
architecture which logically separates the data plane and the
control plane from each other. Now the OpenFlow architecture
is getting more and more popular since it can provide better
flow granularity monitoring and flow control methods. Open-
Flow can also serve as a new real testbed for new network
protocols.

Controller

Router
Client

Wireless Backbone

W
ir

el
es

s
B

ack
b
on

e

Fig. 1. Small Scale WMN

Controller

Router
Client

Wireless Backbone

W
ir

el
es

s
B

ack
b
on

e

Other Network

Other Network

Fig. 2. Large Scale WMN

A. Cognitive Radio Networks(CRN)

Due to the low efficiency of authorized frequency pos-
session, Cognitive Radio has been proposed to improve the
efficiency of the frequency usage. A CR system or CR
network(CRN) consists primary users(PU) which is also called
licensed users and secondary users(SU). The PUs are the
authenticated users by the authorities, typically Federal Com-
munications Commission(FCC) in the USA. The basic idea of
the CR systems is that the SUs can occupy the under-utilized
frequency when PUs don’t occupy it. One typical character of
the CRN is dynamic spectrum access. In this paper, all the
devices including controllers, routers and client terminals are
working as secondary users in the Cognitive Radio Networks.
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Fig. 3. Cognitive Radio based WMN

There are a large number of research papers regarding on how
to detect the PU’s activities and decide the channel selection.
In our network, we use a Hierarchical Dirichlet Process (HDP)
based channel selection model to make channel selection for
every device in the network.

B. Wireless Mesh Networks(WMN)

In this paper, we mainly consider the Wireless Mesh Net-
works(WMN) architecture. WMN is one kind of network
architecture with a wireless backbone network and plenty
of wireless devices such as mesh routers(MR) and mesh
clients(MC). Each MR is the ’header’ of a certain region.
Each MR is connected to one MR. When a MC has data to
send out to the network. Basically, WMN can be classified
into two types according to its network size and scalability,
namely small scale WMN and large scale WMN. For small
scale WMN shown in Fig.1, MCs are only one-hop from the
MR in the region. The MR can contact all the MCs in its
region within one-hop time. For large scale WMN shown in
2, some MCs are not connected to MR directly. There exits
MC to MC connections. In this paper, we assume that the MCs
form a ’tree-topology’ within a mesh region since it is easy to
implement synchronization method and routing algorithm. But
the system complexity and performance will be compromised
compare to small scale WMN.

C. OpenFlow Architecture

Figure 2 shows the OpenFlow architecture. It is easy to
observe that the data plane and the control plane are separated
as two layers. The function of the data plane is forwarding data
to the destination. The control plane(controller) is responsible
for figuring out the routing path for a flow. In our proposed
network, the controller is also responsible for the channel
designation. In the OpenFlow based WMN, the mesh routers
serve as the data plane devices. We have an overall controller
for the whole network. The controller will figure out the
forwarding rules for each data flow. Forwarding rules are
stored into MRs respectively according to the routing path. The
Flow Table is one of the most important parts in the OpenFlow
based network. Later, we will propose the algorithms to build
and update the Flow Table as well as the channel selection.

D. Wireless Wildcard Action Flows

In [2], the author proposed a considerably useful approach
called Wildcard identical action flows to simplify the data
forwarding process. The fundamental idea is to implement a
specified action on every flow. By adding the RouteHeader
to each data packet, the router will find it much easier to
forwarding the data to its destination. At the same time, the
rule assigned to every router is almost the same command
which is simple. The RouteHeader indicates the outgoing
interface of the router to the next router in its path. This
approach is designed for the wired networks. For Node i, the
rule stored is:

Outgoing Interface = Number F irstHeader



Check Outgoing Interface
Case Outgoing Interface
1) forward the datagram to interface 1
2) forward the datagram to interface 2
3) forward the datagram to interface 3

From the rule above, we know that for every hop, the router
pick up the value of the first header, and then forward the data
to the interface which has the same number.

Fortunately, we can apply it to wireless networks too. We
use the Wireless Wildcard Action Flows, instead of marking
the interface number as the RouteHeader. We employ the
channel frequency and the ID number(e.g.MAC address) as
the RouteHeader. The rules are changed to:

Outgoing Node = ID FirstHeader

Channel Frequency = Frequency F irstHeader

Where Frequency F irstHeader represents the frequency
value picked out from the Frequency Flow Table. Here we
simply consider the channel is ready for us. In the next section,
we will explain in detail how we could classify the channel
by the HDP model.

IV. PROBLEM STATEMENT

The Control-Message Quenching scheme was first proposed
in [3]. The goal of the scheme is to reduce the visiting times
of the controller so that the controller is not overwhelmed.
Now we consider an OpenFlow based wireless mesh network
with one controller and N mesh routers. There are mi mesh
clients connected to the ith mesh router, where 1 ≤ i ≤ N .
The data traffic between the routers is expressed as:

Λ =


λ1,1 λ1,2 λ1,3 · · · λ1,N
λ2,1 λ2,2 λ2,3 · · · λ2,N
λ3,1 λ3,2 λ3,3 · · · λ3,N

...
...

...
. . .

...
λN,1 λN,2 λN,3 · · · λN,N

 (1)

Where λi,j is the data arrive rate from Routeri to Routerj
and λi,i = 0 since the data capacity within the same LAN can
be large.

Assume that Tc i is the controller processing time for a
request coming from Routeri. Typically we have

Tc i >>
1

λi,j
(2)

We know that the clients behind each router can generate data
packets that are sent to different routers with probabilities.
In order to simplify the analysis, we only consider the static
probability. The probability from Routeri to Routerj is
represented as

P =


p1,1 p1,2 p1,3 · · · p1,N
p2,1 p2,2 p2,3 · · · p2,N
p3,1 p3,2 p3,3 · · · p3,N

...
...

...
. . .

...
pN,1 pN,2 pN,3 · · · pN,N

 (3)

and with the constraints
N∑
j=1

p(i, j) = 1 (4)

For Routeri, during time Tc i, the clients behind the router
would still generate data and submit it to the router. The arrive
rate, according to (1) and (3), will be

ri =

N∑
j=1

λi,jp(i, j) (5)

If these data packets have to be processed by the controller in
order to get the routing path, during time Tc i, the number of
requests the controller will receive is Tc i

ri
. Substitute (5) into

the expression, we get

Tc i
ri

=
Tc i

N∑
j=1

λi,jp(i, j)

(6)

The total number of requests received by the controller is

Totalreq =

N∑
i=1

Tc i
N∑
j=1

λi,jp(i, j)

(7)

This is a huge number. According to [5], in a network with
average arrive λi,j = 85.3k packet/sec, the messages received
by the controller is about 2.7 Giga/second, which is far beyond
the controller’s capability to handle the messages.

The author in [2] proposed an algorithm to quench the
control messages. The algorithm applies the recording and
waiting scheme to the data plane devices. By establishing
a table that contains the source and destination pair. The
following messages that hit the record will not send the request
again to the controller. The algorithm can reduce all the
repeated requests thus reducing the burden of the controller
significantly.

However, in cognitive radio based wireless mesh networks,
the frequency and bandwidth are precious resources. We want
to further quench the control messages to give the controller
more opportunities to do something valuable.

V. CHANNEL SELECTION AND QUENCHING ALGORITHM

A. HDP based Spectrum Access

In the previous sections we have known that Cognitive
Radio(CR) technology could improve the spectrum utilization
significantly. Recently, many researchers have proposed dif-
ferent kinds of models for spectrum sensing and accessing.
Among those works, Xin-lin Huang in [4] proposed a Hierar-
chical Dirichlet Process(HDP) based spectrum access scheme.
According to [4], the HDP is naturally fit for distributed
spectrum sensing.

The 2nd-level DP is

G0 =

+∞∑
k=1

βkδλ̃k , β|γ ∼ GEM(γ), λ̃k ∼ H (8)



The 1st-level DP:

Gj =

+∞∑
t=1

π̃jtδλ̃jt , π̃j |α ∼ GEM(α), λ̃jt ∼ G0 (9)

By applying the HDP model, the scheme could automati-
cally sense the channel and classify the channel into a certain
group. One of the major benefit of HDP model is that we
don’t have to indicate how many groups there. The model
will update the group number as the probability indicated. The
hidden parameter in this system is

λji|Gj , Xji|λji ∼
k=WHT/π∏
k=WHT/π

Exponential(λjik ) (10)

The CR channel is recognized as a Rayleigh channel. After
applying HDP model, we can find out the nodes which share
the similar channel environment(i.e. channel frequency). One
explanation of the HDP model is named Chinese Restaurant
Franchise(CRF).

p(λi|λ−i, γ,H) =
γ

γ +N − 1
H +

1

γ +N − 1

N∑
k=1,k 6=i

δλk

(11)
It shows that SUs can either be classified into one existed

groups with probability γ
γ+N−1 or into a brand new group

with probability 1
γ+N−1 . In the simulation section, we will

show the results of the channel classification.

B. Quenching Algorithm

In the previous algorithm, only the repeated requests are
quenched. We only record the source and destination pair in
the local router for searching. Here we further explore the
neighborhoods’ resources in their flow tables. The basic idea
of our proposed algorithm is that we can not only record the
historical pair. When the new packets failed to hit the record.
The router could automatically ask its neighbors for help. That
is, one router could share its own flow table with its neighbors.
Here are the rules involved in the idea.

1) Every router know its neighbors’ ID and location.
2) The controller inform the router about the topology

when there are changes in the network.
3) Each router can only ask for routing information from

the nodes within one hop.
4) The items in the flow table in each router only exists for

a certain period of time and will be killed by the router
when the time is over.

Assume that each router maintains and updates a table list L.
We denote a path from source(s) to destination(d) as < s, d >.
Refer to Algorithm 1.

When we choose Algorithm 1, we could quench most of the
redundant requests messages to controller. Thus saving plenty
of controller’s computational resources. As we mentioned in
the previous sections, each router has the probability to visit
all other routers, when the router has the opportunity to get
information from its neighbors, the probability of hitting the

Algorithm 1 Control-Message Quenching(CMQ) with Infor-
mation From Neighbors

1: L: = empty set
2: for each incoming packet do
3: Check the destination node and mark it as dcom;
4: Look up the flow table to find out whether there

is a record matching the destination node and path <
s, d >=< s, dcom >

5: if Matched record found then
6: if The path is ready then
7: Handle the packet as the rule indicated
8: else
9: Wait for the path

10: end if
11: else
12: Ask neighbors to find out the same path
13: if Matched record found then
14: Extract the rule
15: Copy the rule and paste to local flow table
16: Handle the packet as the rule indicated
17: else
18: Consult the controller for path configuration
19: Record the destination node and update list L
20: end if
21: end if
22: end for
23: if Receive an answer from the controller then
24: Record the path
25: Record the node ID along the path
26: Update list L
27: end if
28: if Item time expires then
29: Kill item
30: end if

record becomes much higher. For Routeri, assume that the
neighbors of Routeri form the set S. The hitting probability
to Routerj is

phit(i,j) = pi,j +
∑
l∈S

pl,j (12)

In this way, the network would have better throughput and
delay performance than the previous algorithms. In the sim-
ulation section, we will show the simulation results of the
algorithm.

C. Enhanced CMQ Algorithm

The previous algorithm we have proposed do improve the
overall performance of the network. It also reduces the burden
of the controller. From equation (12) we know the reason is
that we increase the hitting probability. However, there is still
some drawbacks with this algorithm. If we want the packets to
go through the shortest path, we still have to ask the controller
for help. Another issue is that in some cases the controller
figures out a long path that goes through some routers. When
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Fig. 4. Simulation Topology

some of the routers in the middle of the long path have
data to send out, it has to ask the controller again for path
configuration. This is also repeated work for the controller.
In order to avoid this issue, we proposed an enhanced CMQ
algorithm. Based on Algorithm 1, when the packets go to a
remote router, it can bring the path destination information
to the routers within the path. As the packet goes from one
router to another, the destination and path would be stored in
the routers that the packet passed by. In this way, the routers
in the same path all have the information to the destination.
Meanwhile, the routers have higher probability to go through
the shortest path than our previous proposed algorithm does.
The hitting rate goes higher. The detail is illustrated in the
table Algorithm 2.

The Algorithm 2 is designed for the routers. For the
controller, it should have a function to ask for the routers for
the paths. Compare to the time consumed in path computation
and configuration, Asking routers to check if there is existed
path costs far less time and energy. The processing detail is
illustrated in the table Algorithm 3.

In the next section, we will provide the simulation results
for the algorithms described above.

VI. NUMERICAL SIMULATION

In this section, simulation result are provided. We first
illustrate the simulation parameters, and then show the figures.

A. Simulation Parameters

The simulation was designed according to the previous pro-
posed scenario. Shown in Fig.4, the network topology includes
one controller, five mesh routers and 15 mesh clients. All the
connections between the devices are wireless. The controller
manages the whole topology. Each mesh router are marked by
a number from 1 to 5. For router i, we simply add i clients
behind it. Each client could contact any of the remaining
in the whole network. The channel bandwidth between the
Controller and Routers is set to 20Mbps. Generally, the data
traffic between Controller and Routers is far less than that
between routers and clients. The data link capacity between
one router and another is 50Mbps. For simplicity, all the clients
are both senders and receivers. One client could transmit data
to another one randomly with equal probability. The size of
one data packet is 1500Byets, which is the same as the size
of IP packet in Internet. The processing time of the controller
is 10 times the time of one packet transmission.

Algorithm 2 Enhanced Control-Message Quenching(CMQ)
Based on Algorithm 1

1: L: = empty set
2: if Receive a passing packet then
3: Check the destination from the packet
4: if Already have the destination record then
5: Handle the packet by the FirstHeader
6: else
7: Record the destination and the path
8: end if
9: end if

10: for each incoming packet do
11: Check the destination node and mark it as dcom;
12: Look up the flow table to find out whether there

is a record matching the destination node and path <
s, d >=< s, dcom >

13: if Matched record found then
14: if The path is ready then
15: Handle the packet as the rule indicated
16: else
17: Wait for the path
18: end if
19: else
20: Ask neighbors to find out the same path
21: if Matched record found then
22: Extract the rule
23: Copy the rule and paste to local flow table
24: Handle the packet as the rule indicated
25: else
26: Consult the controller for path configuration
27: Record the destination node and update list L
28: end if
29: end if
30: end for
31: if Receive an answer from the controller then
32: Record the path
33: Record the node ID along the path
34: Update list L
35: end if
36: if Item time expires then
37: Kill item
38: end if

Three indicators are used for comparison, i.e. the average
network throughput, average packet delay and the number of
requests to the controller.

B. Simulation Results

Fig. 5 shows the simulation result of the average network
throughput under different schemes. It’s obvious that the CMQ
algorithm with information from neighbors outperforms that
of the conventional CMQ algorithm. The enhanced CMQ
algorithms with information from neighbors works even better.
With the increasing data generation rate, the throughput is
also rising. When the average input data arrival rate is larger
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Algorithm 3 A Function added to Controller
1: if Request from i to j arrived then
2: Ask routers for path
3: if Path found from k to j then
4: ComputePath(i,k)
5: else
6: ComputePath(i,j)
7: end if
8: end if

than 130 packets/second, there is a ceiling for the conventional
CMQ algorithm. However, with information from neighbors,
the throughput could continue increasing.

Fig. 6 presents the average packet delay in the network. As
the data generate rate is increasing, the network is becoming
crowded. Still, our proposed algorithms work better than
the conventional CMQ algorithm. The packet delay of the
proposed algorithms are lower. The delay of the conventional
CMQ increases faster.

In Fig. 7, we simulate the number of requests to controller
with respect to the expiration time of the source-destination
pair records. As we can see from the figure, the number of
requests tent to be a fixed value as the holding time of the
items in flow table increases. This is because when the holding
time is long, more flows are getting easily to hit the record in
the flow table. Thus less requests the controller will receive.
From the result we find that the number of our proposed
algorithms decreases faster. In addition, when we apply the
enhanced CMQ algorithm, the minimum number is less than
other algorithm. The number changes slightly. In this way, we
can set the expiration time to a low level to save more TCAMs
in data plane devices.

VII. CONCLUSION

In this paper, we first introduce an OpenFlow based Wireless
Mesh Network system. Some of the major challenging issues
are presented. An HDP model is introduced to sense and clas-
sify the channel for WMN. We also modified the wildcard rule
to make it useful in wireless systems. Then, we analyze the
problem and proposed an advanced CMQ algorithm to quench
the number of requests to the controller. Simulation results

show that our proposed algorithms work better compared to
the conventional one.
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