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Abstract—This paper is driven by a simple question of
whether traffic engineering in Software Defined Networking
(SDN) can react quickly to bursty and unpredictable changes
in traffic demand. The key challenge is to strike a careful
balance between the overhead (frequently involving the SDN
controller) and performance (the degree of congestion measured
as the maximum load and the balance between the minimum
and the maximum loads). Exploiting OpenFlow (OF) features,
quick shift of routing paths for unpredictable traffic bursty is the
focal point of this work. It is achieved by using a dual routing
scheme and letting the data plane to select the appropriate path
in reacting to uncertainty in traffic load. The proposed work
is called DUCE (Demand Uncertainty Configuration sElection).
Further, we describe a traffic distribution model, an optimization
solution that calculates congestion-free traffic distribution plan
which guarantees that each switch can select one of the paths
in a distributed way, and moreover, OF details about detaching
the functionality of responding to the demand uncertainty from
the control plane and delegating it to the data plane. Simulations
are performed validating the efficiency of DUCE under various
network scenarios.

I. INTRODUCTION

A. Traffic Engineering in SDN and Demand Uncertainty

The simplicity of SDN can alleviate the complexities of
traditional Traffic Engineering (TE) mechanisms [1]. The latter
often relays on proactive methods, which first collect a set of
traffic demands, and then compute optimal routes for these
traffic demands. A straightforward use of SDN has been a
centralized traffic engineering paradigm. Existing work has
shown that centralized TE reduces network congestion and
increases efficiency [2]–[6]. In such systems, a TE controller
typically takes the form of a control loop that measures
the current traffic demand and network topology, solves an
optimization problem, and then reconfigures the network to
match current traffic demand.

While centralized TE can be highly effective, it is still
worthy to ask the question of whether centralized TE can
work effectively in the presence of bursty and unpredictable
changes in traffic demands (referred to as demand uncertainty).
Understanding the characteristics of the traffic demand is the
key to effective and efficient utilization of link capacities [4],
[7]. Theoretically, if the traffic demand is predictable, optimal
routes can be obtained to organize the traffic flows in the
network to minimize network utilization [8]. However, this
approach can only be used if the traffic demand is stable.
Unfortunately, traffic can be highly dynamic and may contain
unpredictable shifts. Prior studies [1], [9], [10] have shown
that the shifts in traffic may leave no time for a proactive

TE algorithm to re-compute or adjust. Consequently, packet
losses occur due to congestion. One way to deal with the
unpredictable traffic shifts is oblivious routing [7]. In oblivious
routing, a robust routing for a class of traffic demand is com-
puted, and thus has the potential to handle traffic spikes well. A
potential drawback of oblivious routing is that optimizing for
the worst-case performance may incur a high cost when traffic
is predictable and stable, which may account for a majority of
time. These early work show that it is desirable for centralized
TE to have strategies able to capture the uncertainty in traffic
demands and to balance the traffic load accounting for the
uncertainty with adequate link utilization.

B. Distributed TE in SDN and Implications

Given a TE strategy dealing with demand uncertainty, we
can plot its cost (e.g., the frequency of involving the SDN
controller) and performance (e.g., the efficiency of responding
to congestion) on a 2-D plane. The desirable strategy, i.e.,
real-time strategy, will require constantly monitoring network
conditions and rapidly reacting to problems [2], [3], [11]. As
an example, load balancing via a controller involves timely
collecting statistics about flows in the data plane [2], then
adaptively rerouting traffic from over-utilized to under-utilized
paths. However, frequent flow installation and network-wide
statistics collection, may yield significant overhead on both
the control plane and the data plane, and consequently limit
the scalability of SDN [12]–[14]. Implication: we should adjust
network configurations when demands shift while reducing the
overhead on the control plane.

A natural strategy to reduce overhead would be a dis-
tributed one, which moves control functionalities toward dis-
tributed control planes [12], [15], where each controller has
a partial view of the network. However, applications, such as
traffic engineering that requires an up-to-date view of the net-
work to optimize their objective functions, would have to cope
with a network of distributed controllers [16] . Implication: we
should deal with demand uncertainty in traffic demand in a
distributed and simple way that does not require collaborating
and exchanging information with each other.

The main problem is how to deal with unpredictable traffic
spikes in a timely way with less control traffic overhead.
Inspired by oblivious routing, we can proactively compute a
routing for normal traffic demand and an alternative routing
for unpredictable traffic demand, in a way that the latter can
handle demand uncertainty. The basic idea, thus, is to reduce
the time needed in responding to the sudden changes of traffic
load with minimum control overhead.



C. Proposed Approach

We attempt to find a balance between the frequency of
involving the SDN controller (i.e., control overhead) and the
efficiency of responding to congestion (i.e., network perfor-
mance), synthesizing existing routing strategies for SDN. Our
approach is to consider both proactive and reactive methods as
complementary with each other. The proactive methods, e.g.,
prediction-based TE and oblivious TE, focus on minimizing
the maximum link load observed over a period of time.
However, they rely on precise knowledge of the traffic demand,
and thus may not prepare for handling demand uncertainty. The
reactive methods, e.g., real-time routing and distributed control
plane, attempt to adjust routing configurations as demands
shift. However, their effectiveness is tied to how quickly
they adapt to changing demands. The key method we use
is to delegate the control function of responding to demand
uncertainty to the data plane, with the guideline presented by
SDN controller. Thus, while traffic flows are passing through
the switches, reactions to changes in traffic demands will occur
directly without passing traffic statistics to the controller and
waiting for a flow table update.

Based on this insight, we propose a new scheme called
DUCE (Demand Uncertainty Configuration sElection). DUCE
will solve the following two problems: Can responding to
bursty and unpredictable changes in traffic demand be done
in the data-path without adding new data-path mechanisms to
the switches? How such a distributed data-path-based approach
achieve acceptable performance globally?

For the first problem, the underlying issue is that OpenFlow
(OF) switch under SDN is dumb. They cannot dynamically
change the proportion of traffic that is routed along each path
according to the network states. They only explicitly react to
commands from the controller. When bursty traffic occurs,
they may fail to adjust network configurations in time, and
thus cause serious network congestion. To solve this problem,
DUCE uses a simple yet effective way: performing only a
selection function at each OF switch based on traffic marks.
Specifically, DUCE fully exploits the features of OpenFlow,
including the meter table and group table. The former measures
the rate of packets and remarks the DSCP (Differentiated
Services Code Point) field. The latter provides the ability to
define multiple forwarding behaviors according to the DSCP
mark. The issues relating to measure the bandwidth consumed
by each flow and to make decisions based only on these local
states will be studied in this paper.

For the second problem, the underlying issue is that
there is a potential risk of adjusting the traffic distribution
leading to network congestion, because the adjustment of
traffic distribution is performed at each switch in an online
and distributed fashion. The distributed adjustment has the
advantage of responding quickly to changes in traffic, but
is limited by lacking of global knowledge of the network
state. The oblivious method may have the over-provisioning
problem if they attempt to fully cover real-time traffic spikes
with fixed bandwidth reservation in their offline approach. To
this problem, instead of providing a single routing for all
possible uncertain scenarios, DUCE precomputes and uses two
routes for each flow in the network: one route is for normal
traffic conditions and the other is for unpredictable conditions.
The second route is a congestion-free traffic distribution plan,

which guarantees that each switch can adjust the distribution
of its flows in a distributed way and irrespective of the order
in which the distributions are adjusted. The route calculation
directs the unpredictable flow demands to links that can
accommodate their bandwidth requirements. The solutions to
aforementioned first problem allow the installations of these
routing configurations to the switches, so the switches handle
traffic uncertainty in the data plane. In this paper, we study
issues relating to estimating traffic load and compute the
congestion-free routes.

DUCE is evaluated through simulations. First, we compare
DUCE to standard offline TE approaches, i.e., prediction-based
TE and COPE, based on Abilene topology and traffic traces,
and show that it can efficiently utilize network bandwidth.
Second, we compare DUCE to an online TE approach which
periodically shifts flows to least loaded paths, and show that
with bursty traffic demand, the traffic distribution under DUCE
is stable and load balancing is achieved.

This paper makes the following key contributions.

• Propose the idea of detaching the functionality of responding
to demand uncertainty from the control plane and delegating
it to the data plane. Moreover, exploit the features of OF
to make it happen, so to achieve the goal of enabling fast
reaction to uncertainty in traffic load.
• Use a dual routing strategy at the data plane which handles

normal case and bursty case separately by two separate
policies. Moreover, present an optimization solution that
calculates congestion-free traffic distribution plan which
guarantees that each switch can select one of the policies in
a distributed way and irrespective of the order in which the
distributions are adjusted at different switches.
• Evaluate DUCE with comparisons with both offline optimal

TE schemes and an online greedy TE scheme. Comparisons
to the former show that DUCE can reduce maximum load
on bottleneck links, while keep the degree of imbalance over
all the links low. Results also show that DUCE follows the
traffic demand changes quicker by showing low frequency
of traffic fluctuations.

The rest of the paper is organized as followings. Section II
presents case studies about traffic uncertainty using Abilene
data. Section III introduces the two key ideas of DUCE,
namely, selection function and traffic distribution plan. Section
IV describes the model and optimization problem for the
alternative path that handles traffic uncertainty. Section V
presents simulation based evaluations. Sections VI and VII are
related work and conclusions respectively.

II. MOTIVATION

Our work is motivated by the following observations, for
examples, the demand uncertainty occurs frequently in the net-
work, and TE solutions have to consider how to minimize the
impact of demand uncertainty on a specific performance goal,
such as minimizing bandwidth consumption and balancing the
load distribution.

A. Demand Uncertainty

Understanding the characteristics of the traffic demand is
the key to efficient utilization of link capacities. We briefly



0 50 100 150 200 250
Time interval (5min)

102

103

D
e
m

a
n
d
 f

ro
m

 L
o
s 

A
n
g
e
le

s
to

 C
h
ic

a
g
o
 (

M
b
p
s)

05-10

05-03

(a) Traffic dynamics

1.0 0.5 0.0 0.5 1.0
Relative error

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

dynamic

peak

multi

(b) CDF of relative error

Fig. 1: Traffic dynamics in Abilene data (a) and relative error
between the predicted demand and the real demand (b).

present the properties of Abilene traces [17] and MapReduce
bandwidth requirement, highlighting specific features that in-
fluence DUCE design.

First, we examine the Abilene (Internet2) data to show the
traffic demand uncertainty. Figure 1(a) shows the existence of
variations in traffic demand over time (the red solid line) and
huge traffic spikes while the rest remains relatively stable most
of the time (the blue dashed line). Second, we examine the
time-varying traffic of MapReduce in Figure 8(a) according
to the traffic pattern depicted in [18]. The figure shows that
using a fixed-bandwidth reservation can potentially waste the
resources of the datacenter.

These observations validate the need to quickly react to
demand uncertainty, and the need to avoid over-provisioning.
In this work, we strive to achieve a balance between the two
while also to offer optimization for bursty traffic.

B. Analysis of Existing Methods

We classify exiting TE approaches in terms of the avail-
ability of traffic demand or the timescale of operations in
two classes: offline TE and online TE. The offline TE class
configures the set of link weights that minimize the maximum
network utilization with an available and fixed traffic demand
matrix. In contrast, the online TE class sets link weights adap-
tively based on current network conditions, reacting quickly to
demand uncertainty.

Most of the proposed offline TE methods are prediction-
based. The prediction-based TE methods can be further cate-
gorized into the following classes [1]: (1) dynamic, methods
based on the traffic demand in the previous interval; (2) peak,
methods based on the traffic demand in the peak interval (in
terms of the total volume of traffic) of the previous day and the
same day of the previous week; and (3) multi, methods based
on a set of traffic matrices in the previous day and the same
day of the previous week. We would like to understand the
gap between predicted traffic demand and real traffic demand.

Figure 1(b) shows a comparison in terms of relative error
(in the -1 to 1 range) between predicted traffic demand
(e.g., dynamic, peak, and multi) and real traffic demand for
the Abilene traffic trace. For the multi method, we plot the
minimum relative error for each IE-pair. The figure shows
that both peak and multi methods have high relative error.
For example, the relative error greater than 0.5 for the peak
and multi approaches are 52.5% and 31.4% respectively. As
a result, peak and multi methods typically require bandwidth
over-provisioning. On the other hand, the dynamic method has
a lower fraction above the 0.5 threshold (nearly 10%) than peak
and multi methods. In fact, the fraction of relative error in the

range of [-0.2, 0.2] constitutes 63%. Thus, the dynamic method
has a tight relative error, and may fail to cope with bursty and
unpredictable changes in traffic demands.

To account for the gap between predicted traffic demand
and real traffic demand, another type of offline TE methods,
which referred to as oblivious routing, computes routes that
are optimized for the worst-case performance. A potential
drawback of oblivious routing is that optimizing for the worst-
case performance may incur a high waste when traffic is
predictable and stable, which may account for a majority of
time. COPE (cope) is proposed to combine the best of both
prediction-based TE and oblivious routing. It optimizes routing
based on the convex hull constructed from the set of traffic
matrices collected from the previous day and the same day
last week, subjected to a performance-ratio penalty envelope
on all nonnegative traffic demands. Similar to multi, cope also
requires bandwidth over-provisioning.

The major weakness of offline TE is the lack of adaptive
traffic manipulation according to traffic and network dynamics.
In order to rapidly respond to demand uncertainty, online TE
class typically performs on a timescale of minutes or even
milliseconds in order to evenly distribute traffic within the
network promptly. Online TE methods aim to dynamically split
traffic among multiple paths, i.e., decides on when and how
to shift traffic among the paths, based on the view of the load
situation in the network. Specifically, an online TE solution
takes the form of a control loop that periodically polls the
switches for collecting flow statistics, and then tires to moves
traffic from the over-utilized paths to the under-utilized paths
until the utilization is balanced. However, since online TE
mechanism is implemented at (logically) centralized controller,
this would require continually distribute the rules across the
affected switches to dynamically adaptive to time-varying
network states. This forwarding rule installation process may
take time and yield significant overhead at both the control
plane and data plane. Indeed it is challenging to build an
online TE scheme for SDN that respond quickly to changes
in traffic, yet requires no additional interactions between the
controller and switches during demand uncertainty. Therefore,
there is a need for an online TE method that combines practical
implementation with clear performance advantage.

Again, the goal of our work is to rapidly respond to demand
uncertainty by, performing traffic distribution on a timescale
of minutes or even milliseconds.

III. DUCE CORE IDEAS

As analyzed above, the two fundamental limitations (i.e.,
high latency and reduced scalability) of the existing SDN-
based TE approaches stem from the fact that they process
the demand uncertainty in the control plane. In this paper,
we propose a new design called DUCE which deals with the
demand uncertainty in the data plane. DUCE is based on two
key ideas. The first idea is to perform a selection function at
each OF switch to adjust traffic distribution in an online and
distributed fashion. However, adjusting the traffic distribution
locally without incurring network congestion is challenging.
Thus, our second idea is to combine the selection function
with a traffic distribution plan, which guarantees that adjusting
traffic distribution locally will not incur network congestion.



Algorithm 1 Path selection

At each interval of t:
1: Calculate the moving average rate H for every flow X .
2: If rate H is less than a pre-defined threshold value T ,

select route r = 0. Otherwise, select route r = 1.
3: If route is find, using the corresponding weight to config-

ure path selection function Q.
At each packet of flow X arrival:

4: Forward packet to path p using traffic splitting algorithm.
5: Record the number of packets that have passed through

for each time interval of t.

route 0

route 1

f0 f1 f2

f0 f1 f2
Rate 

Counter H

Flow X

Route 
Selection S

Route set RSelected route r=
1>0 H −T( )

Weight set W

p0 p1 p2

Path set P

Path Selection Q

Fig. 2: Path selection.

A. Selection Function

For the selection function, three components are added
to the switches as shown in Figure 2. First, a rate counter,
which monitoring the rate of incoming flows and determining
whether there is a spike or not. Then, a route selection, when
there is a spike in traffic demand, it will switch to alternative
route. Finally, a globally optimized route table, provides two
routes for each source-destination pair. One for normal traffic
conditions and the other for unpredictable conditions. As a
result, load assigned on each path can be adapted to dynamic
changes of the traffic condition.

Selection function is supported using path selection as
shown in Figure 2. The input to the path selection function
Q is each packet of flow X . The output is a path to which the
packet should be assigned according to the load. Path selection
for each flow is decided independently. The path selection
function can be implemented by using a weight-based traffic
splitting algorithm (e.g., WRR, THR, etc [19]). Each path is
associated with a weight that determines how much traffic load
should be sent via that path as compared with other paths, i.e.,
traffic splitting ratio. The weights among the available paths are
adjusted according to real-time flow rates by the route selection
function S. The assignment of weight is based on the arrival
rate of flow X: whenever the rate of flow X exceeding a pre-
defined rate threshold T , the weight will be assigned with route
0; otherwise, it will be assigned with route 1. When a flow
arrival rate changes, the weight is adjusted. Therefore, load
assigned on each path can be adapted to dynamic changes of
the traffic condition. Congestion induced by bursty and sudden
spikes in traffic rate can be mitigated. The value of flow rate
H can be found by using an exponentially weighted moving
average function: H = (1− α)Hold + αHnew. The value of
T determines the frequency of updating weight assignment.

The procedure for this basic idea is summarized in Algo-
rithm 1. First, the weight assignment will be updated at each
time interval t: calculates the moving average rate for flow
X (Step 1), determines which weight to be chosen (Step 2)
and updates the weight assignment (Step 3). Second, when a
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Fig. 3: This example shows how to perform a dynamic traffic
distribution through incremental router reconfiguration.

packet of flow X arrives, it will be sent via a path selected
according to its weight (Step 4). The corresponding counter
will be updated (Step 5).

B. Traffic Distribution Plan

We illustrate by example that how changes in traffic lead
to congestion and how to prevent the congestion through a
carefully designed traffic distribution plan.

Figure 3(a) shows a simple network where the capacity of
each link is 15. The numbers besides the ingress switches are
traffic demands and the arrow indicates the traffic direction.
The number on each link is the traffic load. This figure shows
a normal traffic demand and the optimal traffic distribution
where an offline algorithm uses a multi-commodity flow linear
programming to optimally split the traffic among the links. For
example, the load on link I1 → A is 10, all the demand of
I1→ E1, while the load on link I2→ C and I2→ M are 10,
half of demand of I2→ E2. No link is congested.

Suppose there is a sudden spike in traffic demand, as shown
in Figure 3(b). The demand of I1→ E1 and I2→ E2 increases
to 16 and 26, respectively. However, applying the routing plan
of common case to the bursty traffic demand, i.e., the splitting
ratio used in Figure 3(a) to the case in Figure 3(b), will break
the load balance of the network. As a result, link I1→ A will
have a load of 16, exceeding its capacity.

To prevent the preceding congestion, we need to change the
routing, i.e., the traffic split ratio on both I1 and I2. While
a traditional solution is to change the splitting ratio of the
common case in order to handle the bursty case when it occurs,
our approach is to introduce a separate traffic distribution plan
for increased demand. Figure 3(c) shows such an alternative
routing, where I1 splits traffic by 4:2 and I2 splits traffic by
2:4. It is easy to verify that no link is congested.

IV. DUCE DESIGN

DUCE separates the functionality of responding to demand
uncertainty from the control plane and delegates to the data
plane. Thus, DUCE consists of two layers as shown Figure 4:
the first layer, traffic distribution plan (TDP), computes routing
for the common case demand and the unpredictable case
demand; while the second layer, route selection (RS), achieves
dynamic transition between two different routes (forwarding
behaviors).

TDP uses a simple model to capture the traffic demand
of each flow f : the traffic demand of f is Tf at common
case, while it is upper bounded by Φf . Instead of optimizing
the routing for all possible traffic demand, TDP seeks to
provide different routings for different traffic demand. Given a
predicted traffic demand Tf and a possible peak traffic demand
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Fig. 4: The high-level working process of DUCE.

Φf , TDP will attempt to compute a common case traffic
distribution af for Tf and a worst case traffic distribution
bf for Φf − Tf . Considering that optimizing performance for
worst case may come at the expense of poor performance for
common case, TDP ensures the performance of routing af to
be slightly higher than optimal under common case, specified
by parameter ε; and uses the parameter π to control how far
the worst case traffic demand is away from the common case.

The TDP layer feeds the computed routing af and bf
to the RS layer. For each flow f , the RS layer on the OF
switch uses a rate-limiter to limit the traffic. The rate-limit
is assigned by the TDP layer, i.e., Tf and Φf . RS aims to
transition from af to bf when traffic rate changes from Tf
to Φf . Specifically, when the rate of flow f is greater than
Tf , RS will change the corresponding rules from af to bf
on involved switches. To enforce traffic distribution (i.e., af
or bf ), Weighted-Cost-Multi-Path (WCMP) is used to direct a
matching packet to an output port. DUCE leverages the hash
function (i.e., WCMP) on the OF switches. Doing so, DUCE
can adjust the bandwidth among different flows to achieve high
network utilization, while avoiding the congestion caused by
uneven flow assignment.

A. Network Model

We first describe a network model under which we formally
define the traffic demand as the input to DUCE TDP layer.

1) Traffic Demand: Let G = (V,E) be a network under
consideration, where V is the set of switches, and E is the
set of links connecting the switches. Let ce or cij denote the
capacity of a directed link eij from switch i to switch j. Let
F = {f} be the set of flows aggregated by ingress-egress
switches. A flow f enters the network from an ingress to an
egress switch through one or multiple paths (Hf ). A traffic
demand T defines the size of each flow Tf .

2) Traffic Distribution: Let af,h be the bandwidth allocated
for flow f on path h. A traffic distribution, denoted by ~A, is
specified by a set of values {af,h|f ∈ F, h ∈ Hf}. Given a
traffic demand T , the traffic distribution ~A can be computed
by using a multi-commodity flow linear program, as follows:

min MLUT (1a)
subject to :

∀e ∈ E :

∑
f∈F,h∈Hf af,hδ [h, e]

ce
≤MLUT (1b)

∀f ∈ F :
∑

h∈Hf
af,h = Tf (1c)

∀f ∈ F, h ∈ Hf : 0 ≤ af,h ≤ Tf (1d)

Where the binary indicator δ [h, e] denotes if path h traverse
link e. The objective in the formulation is to minimize the max-
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imum link utilization (MLU ). The second condition specifies
that all demands of a flow should be routed.

3) Flow Rule: Given a traffic distribution ~A, we can
compute the rule set R for ~A. Let rfij be the rule for flow

f on link eij , where rfij =
∑
h∈Hf af,hδ [h, eij ]

/
Tf . A rule

set R is specified by a set of values
{
rfij |f ∈ F, eij ∈ E

}
.

B. Modeling Demand Uncertainty

We assume that the demand of each flow f is unknown
and varies with time, but that always lies inside an explicitly
defined region, i.e., [Tf ,Φf ]. Note that Φf is the bound for
the unpredictable traffic, and independent of time; if we have
a better understanding of the traffic, we can have a tight bound.
Let θf be the set of time when there exists changes in flow
f . Given θf , we can model demand uncertainty of flow F as
follow:

Sf (t) =

{
Xf : t ∈ θf , Xf ∈ (Tf ,Φf ] (2a)
Tf : otherwise (2b)

Function 2 attempts to model demand uncertainty into pulse
functions with varying height and width peaks. To see how
this model capture traffic demand uncertainty, we examine
the Abilene data. Figure 5 plots the real traffic demand and
predicted traffic demand (by using dynamic method) from Los
Angeles to Indianapolis. To capture the traffic demand, we
can use the predicted traffic demand as the lower bound, i.e.,
Tf ; and use the absolute error of dynamic method as the
unpredictable demand, i.e., Xf − Tf , where absolute error is
defined as the predicted demand minus the real demand. Since
the value of Xf − Tf in our model is always greater than 0,
we then set the value of Xf −Tf as max {absolute error, 0}
(the bursty line in Figure 5).

However, Function 2 needs prior knowledge on when
bursty will happen. To reduce this assumption, we introduce
a vector ϕ (t) = [ϕt,f |f ∈ F ] that indicates the status of each
flow f at time t, where ϕt,f = Sf (t)/Φf ; and a slave variable
π that bounds the total number of changes in flows. Then we
covert function 2 into the following constraint:

Sf (t) =

{
Xf : ‖ϕ (t)‖1 ≤ π, Xf ∈ (Tf ,Φf ] (3a)
Tf : otherwise (3b)

where ‖ϕ (t)‖1 =
∑
f∈F ϕt,f .

C. Computing Traffic Distribution

The basic idea is that we do not change the distribution of
a flow f across its available paths as long as the bandwidth
consumed by this flow below a certain threshold, i.e., Tf . Only



when the bandwidth consumption of this flow exceeds Tf , will
the distribution for it be adjusted. The main reason for limiting
the number of routings to 2 is that we want to limit the amount
of rules installed in the memory used in OpenFlow switch.

A key challenge is to implement these adjustments with-
out causing congestion. The underlying problem is that the
adjustment of traffic distribution is performed at each switch
in an online and distributed fashion. This has the advantage
of responding quickly to changes in traffic, but is limited
by lacking of global knowledge of the network state. Hence,
there is a risk of collision, moving traffic to over-utilized
paths, and thus leading to congestion. To avoid congestion
distribution adjustments, DUCE computes a congestion-free
traffic distribution plan, which guarantees that each switch can
adjust the distribution on its flows in a distributed way and
irrespective of the order in which the distributions are adjusted.

To compute such a distribution plan, we first remove
the time variable in Function 3. Since both Φf and Tf are
independent of time, we can convert demand uncertainty model
into time independent demand set as follow:

Lemma 1: Function 3 can be convert into the sum of T
and ∆π ={

∆f = Xf
′ − Tf |Xf

′ ∈ [Tf ,Φf ] ,
∑

f∈F

Xf
′ − Tf

Φf − Tf
≤ π

}
where T is normal traffic demand, and ∆π is bursty demand.

Proof: From the definition of ϕt,f and Sf (t), we have:

Xf
′ − Tf

Φf − Tf
≤ Xf

′

Φf
=
Sf (t)

Φf
= ϕt,f (4)

Thus, ∆f captures the increased demand of flow f . Then we
can convert Function 3 into: Sf (t) = Tf + ∆f .

Given ∆π , we denote ~B the traffic dis-
tribution for traffic demand ∆π , where ~B ={
bf,h|f ∈ F, h ∈ Hf ,

∑
h∈Hf bf,h = ∆f , bf,h ≥ 0

}
. Then,

we can replace constraints 1a and 1b with:

min MLUS (5a)

∀e ∈ E :

∑
f∈F,h∈Hf (af,h + bf,h) δ [h, e]

ce
≤MLUS (5b)

To solve (5), we then bound the load on each link offered
by increased demand with the following lemma.

Lemma 2: Let ψe = max
∆π

∑
f∈F,h∈Hf bf,hδ[h, e], if the

distribution {af,h, bf,h}∀f∈F,h∈Hf can guarantee that: ∀e ∈
E :

∑
f∈F,h∈Hf af,hδ [h, e] + ψe ≤ ce, then each switch

can independently adjust its distribution on its flows without
causing congestion.

Proof: Denote ωf,h = bf,h

/∑
h′∈Hf bf,h′ . Let df and

dh be the instantaneous rate of flow f and path h respectively.
When df exceeds Tf , i.e., Tf ≤ df ≤ Φf , the switch adjusts
the distribution of flow f from af,h to bf,h, the traffic load of
flow f on a path h is:

dh = af,h + (df − Tf )ωf,h = af,h + ∆fωf,h (6)

which is directly derived from the definition of ∆π , i.e., ∃∆π :
(df − Tf ) ∈ ∆π . Therefore, the total traffic on a link e is:∑

f∈F,h∈Hf
dhδ [h, e] ≤

∑
f∈F,h∈Hf

af,hδ [h, e] + ψe ≤ ce

which finishes the proof.

Using linear programming duality, we can show that the
ψe ≤ ϑ if and only if the following set of constraints can be
satisfied: ∑

f∈F
µe,f + λfπ ≤ ϑ (7a)

∀f ∈ F :
µe,f + λe
Φf − Tf

≥
∑

h∈Hf
bf,hδ [h, e] (7b)

∀f ∈ F : µe,f ≥ 0 (7c)
λe ≥ 0 (7d)

The variables µe,f and λe are dual multipliers on the constraint
∆f ≤ Φf − Tf and

∑
f∈F ∆f/(Φf − Tf ) ≤ π, respectively.

We can then covert (1) into a set of linear constraints as
following:

min MLUS (8a)
subject to :

∀e ∈ E :∑
f∈F,h∈Hf af,hδ [h, e] +

∑
f∈F µe,f + λfπ

ce
≤MLUS

(8b)

∀e ∈ E :

∑
f∈F,h∈Hf af,hδ [h, e]

ce
≤ ε ·MLUT (8c)

∀e ∈ E, f ∈ F :
µe,f + λe
Φf − Tf

≥
∑

h∈Hf
bf,hδ [h, e] (8d)

∀f ∈ F :
∑

h∈Hf
af,h = Tf ;

∑
h∈Hf

bf,h ≤ Φf − Tf (8e)

∀f ∈ F, h ∈ Hf : 0 ≤ af,h ≤ Tf ; 0 ≤ bf,h ≤ Φf − Tf (8f)
∀f ∈ F, e ∈ E : µe,f ≥ 0 (8g)
∀e ∈ E : λe ≥ 0 (8h)

Constraint (8c) bounds the penalty on normal traffic demand
by ε ·MLUT , and (8e) guarantees that all the traffic of T is
fully delivered and total traffic delivered should not exceed Φ.
Constraint (8b) guarantees the worst case performance.

D. Route Selection and Implementation

The output of DUCE TDP layer is a sequence of traffic
distributions, each of which can be implemented by installing
its corresponding flow table entries into the switches. Given a
traffic distribution ~A, we then compute the rule set R1 for ~A.
As defined before, the rule set R1 is specified by a set of values{
rfij |f ∈ F, eij ∈ E

}
, where rfij =

∑
h∈Hf af,hδ [h, eij ]

/
Tf .

Then the rule set should be installed into a switch i
is given by

{
rfij |∀f ∈ F,∀j ∈ V, eij ∈ E

}
. Similarly, we

compute a rule set R2 for distribution ~B, where R2 ={
rfij =

∑
h∈Hf bf,hδ [h, eij ]

/∑
h′∈Hf bf,h′ |eij ∈ E

}
.

We assume that each switch has a group table and a meter
table. Rules in the group table include an ordered list of
action buckets. Each action bucket contains a set of actions to
execute, and provides the ability to define multiple forwarding



Algorithm 2 Route Selection on Switch i

When switch i receives a packet of flow f :
1: A meter measures the rate of flow f .
2: If current rate is greater than Tf , remark the DSCP field.
3: If DSCP is remarked, select route R1; otherwise, R2.
4: If route is R1, select outport 1; otherwise 2.

Group 1SrcPrx = I1, DstPrx = E1, DSCP = 0
SrcPrx = I1, DstPrx = E1, DSCP = 1

Match Instructions

Group 2

Table 1

1/3 Fwd C, Vlan = 2Fwd A, Vlan = 2WCMP 2/32

Bucket2 Action

Fwd C, Vlan = 1Fwd A, Vlan = 1

Bucket1 Action

0.0

Group ID Bucket2 WeightBucket1 Weight

1.01

Group Type

WCMP

Group Table

Meter Table

1

Meter ID ParameterRate

101

Band Type
DSCP 
remark

InstructionsMatch
Meter 1, Table 1SrcPrx = I1, DstPrx = E1

Table 0

Fig. 6: Implementing DUCE on OpenFlow switch.

behaviors. rfij can be implemented on switch i by using group
table with type WCMP. The meter table measures the rate of
packets and remarks the DSCP filed. Algorithm 2 describes
how a packet of flow f will be processed within a switch
i. When a packet of flow f arrives, it will be processed as
follows: First, the meter table decides whether DSCP field of
this packet should be remarked (Step 1 and Step 2). Second,
the group table select an outport, which depends on whether
DSCP field has been remarked.

Figure 6 shows an example of how to implement DUCE
on an OF switch. For simplicity, we have replaced the names
of ports with the switches they are connected to, e.g., in
place of the name of the port connecting I1 to A, we simply
write A. The OF pipeline processing always starts at the first
flow table (i.e., Table 0): the packet must be first matched
against flow entries of flow table 0. It consists of a match that
specifies packet attributes (e.g., packet aggregated by ingress-
egress switch I1→ E1) and a list of instructions that specify
how to process matching packets. In this case, the rule states
that all packets coming from ingress switch I1 to egress switch
E1 should be processed by the entry with identifier 1 in meter
table and then processed by Table 1. Thus, when a packet
arrives, it is first processed by meter band with type DSCP
remark specified by the 1-the meter entry, which will increase
the value of DSCP to 1 if the current rate is higher than 10.
Then, the packet header is matched against flow entries of flow
table 1. Table 1 determines which forwarding behavior (defined
by group table) to adopt by using DSCP field. Finally, group
table uses the WCMP group type to forward the packet to the
next hop. As a result, the forwarding behavior of the packet
is adjusted when the flow arrival rate changes. For ease of
explanation, we assume that the default value of DSCP filed
in the header of each packet is 0. It can be easily extend to
general cases.

V. EVALUATION

In this section, we evaluate DUCE by simulations. We first
compare DUCE with offline TE approaches and show that it
can efficiently utilize network bandwidth. Then we compare
DUCE with an online TE approach and show that within a
network that has bursty traffic demand, the traffic distribution
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Fig. 7: Comparison with offline TE.

under DUCE is stable and load balancing is achieved.

A. Comparison with Offline TE

1) Traffic demands and topologies: Similarly to [1], we
use the real topology and traffic demand of Abilene [17] for
comparison with offline TE methods.

2) Performance metrics: We use the following two per-
formance metrics to compare different offline algorithms:
maximum provided bandwidth (MPB), defined as

MPB
(
~A
)

= max
e∈E

∑
f∈F,h∈Hf

af,hδ [h, e] (9)

and maximum link load [10], defined as

MLL
(
~A,D

)
= max

e∈E

∑
f∈F,h∈Hf

Dfaf,h∑
h′∈Hf af,h′

δ [h, e] (10)

where D is the set of real traffic demand of each flow Df .
Given the maximum provided bandwidth MPB and the max-
imum link load MLL, the maximum link utilization is given
by MLU = MLL/MPB (for simplicity we assume here that
the capacity of each link is given by MPB). Instead of using
MLU as performance metric, we use MLL and MPB separately
because each reveals unique performance aspects that matter
to DUCE design. Specifically, MPB captures the ability of a
TE scheme for capacity planning (i.e., bandwidth reservation),
while MLL captures the extent of congestion given the MPB.
Minimizing the MPB leads more available bandwidth, which
can be used by other flows. Confining the MLL helps reducing
the occurrence of packet losses and retransmissions.

3) Alternative algorithms: We consider dynamic, peak,
multi, and cope, as discussed earlier. We solve the correspond-
ing linear programming problems with MOSEK [20]. Our
simulations show that both peak and multi algorithms perform
poorly, while dynamic achieves close-to-optimal performance
most of the time. Thus in the following presentations, we omit
the results of both algorithms, and report only the results of
dynamic and cope algorithms.

4) Bandwidth provisioning: Figure 7(a) compares the algo-
rithms in terms of MPB (i.e., reserved bandwidth). Since cope
attempts to reduce the worst-case penalty, and thus requiring
a high bandwidth provisioning (∼16% of link capacity); while
duce is only slightly higher than dynamic.



5) Maximum link load: The traffic of 10 May is used as
the input of the maximum link load for the comparisons of the
algorithms. Figure 7(c) plots the maximum link load versus
the time interval. For clarity, we zoom in to a few intervals
in the day. We make the following observations. First, duce
show lower MLL than dynamic at most of the time intervals.
As we saw before (Figure 1(b)), the predicted error greater
than 0.2 of dynamic can be as high as 36.5% by combining
16.1% (relative error less than -0.2) and 20.4% (relative error
greater than 0.2), thus resulting a higher performance penalty
than duce. Second, the maximum link load of duce and cope
are close before the time interval of 140. However, after the
time interval of 140, duce achieves better performance than
cope.

For clarity, we plot the CDF of absolute relative error
between MPB and MLL for these algorithms, as shown in
Figure 7(b). The absolute relative error of a given MLL with
respect to a certain MPB measures how far is the MLL
from being optimal, i.e., minimizing the impact of demand
uncertainty given the constraint of bandwidth consumption.
It is defined as the relative error between MPB and MLL
divided by the MPB. Formally, the absolute relative error is
|(MLL−MPB)/MPB|. Correspondingly, the closer to 0
the value of absolute relative error means the better of the
performance. We can find that duce has better performance in
terms of absolute relative error than both dynamic and cope.

In summary: (1) For the same traffic demands, duce can
deal with traffic uncertainty compared to cope, but requires
only one-fourth bandwidth provisioning. (2) For the same
bandwidth provisioning, duce can adapt to traffic uncertainty
when dynamic cannot.

B. Comparison with Online TE

1) Traffic demands and topologies: We use a simple
topology as shown in Figure 3, where link (C,D) is shared
between paths from pairs (I1,E1) and (I2,E2). Thus, there
is an interaction between the pairs, which captures the main
feature of online algorithms. We write a packet level discrete-
event simulator in Python to conduct this experiment. Figure
8(a) shows the packet arrival rates in our experiments, which
is generated according to the traffic pattern depicted in [18],
which captures the bandwidth requirement of MapReduce ap-
pellations with a coarse-grained pulse functions with different
widths and heights. For clarity, we only show a few intervals
from 20s to 80s of our experiments.

2) Alternative algorithms: We consider a greedy online
algorithm (greedy): At each time interval t, for each flow,
greedy searches all possible paths linearly to find one which is
least loaded. If such a path is found, then that flow is placed on
the path. This algorithm models online load balancing schemes
used in MATE [10], TeXCP [9], Hedera [2], and CONGA [21].

3) Performance metrics: We use the following two metrics
to compare duce with greedy: throughput imbalance, defined
as the maximum throughput minus the minimum divided
by the average, i.e., (MAX −MIN)/AV G; and stability,
defined by the frequency of load changes.

4) Overall performance: Figure 8 compares the algorithms
in terms of link load. Figure 8(b) shows that as traffic demand
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Fig. 9: Throughput imbalance and stability.

changing, greedy with the frequency of 1s cannot react to
changing demand. It is expected that greedy method increases
the frequency of path adjustment. As shown in Figure 8(c),
when greedy increases its frequency to 0.5s, the performance
of greedy improves significantly. In contrast, duce (Figure 8(d))
reacts in realtime to the actual demand and performs compa-
rably with greedy of 0.5s. It means that greedy need to run
every 500ms to approach the performance of duce. However,
rerouting traffic to the least loaded link too frequently may
cause oscillations. Figure 9(b) shows the standard deviation of
load on each link. The result indicates that duce can achieve
comparable and better performance with greedy for 0.5s and
slower update frequencies while prevent oscillations.

5) Throughput imbalance: Figure 9(a) shows the CDF of
the throughput imbalance across the 3 links (e.g., (A,B), (M,B),
(C,D)). This is calculated during the time interval (10s, 100s).
The results show that duce is slightly better than greedy with
0.5 seconds adjustment interval.

6) Stability: To quantify the stability, we use the Fourier
transform to convert the results of throughput imbalance into
the frequency domain, see Figure 9(c). The figure shows that
the oscillation frequencies of duce are closely centered together
while those of the two cases of greedy are scatted widely.
The observation suggests that duce produce more stable traffic
flows than the greedy algorithm.

In all, considering achieving the same throughput imbal-
ance, duce can produce stable flows than greedy. Moreover,
duce can achieve acceptable performance under bursty traffic.

VI. RELATED WORK

For brevity, we focus below on centralized flow man-
agement techniques supported by SDN. Existing traffic en-
gineering schemes can be mainly classified into two types:
the proactive methods and the reactive methods. Each type
of method achieves a different tradeoff between data-plane
performance and control-plane overhead.

Reactive. The reactive methods will constantly monitoring
the network conditions and reacting to traffic changes accord-
ingly. Hedera [2] detects elephant flow at the edge switches
and finds an alternative path with sufficient capacity for each
elephant flow. The performance of Hedera is constrained by
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Fig. 8: Comparison with online TE. Synthesized traffic demand (a) and overall performance in terms of link load (b, c, and d).

the rates and durations of flows. DevoFlow [3] delegates
the handling of mice flows to the data plane, and therefore
reduces the number of interactions between the controller
and switches. Both Hedera and DevoFlow involve controller
in maintaining an accurate and global view of the traffic
demands, and rerouting the traffic. However, it is differs from
the existing work by performing these all in the data plane,
without involving the controller.

Proactive. The proactive methods typically rely on prior
knowledge of the traffic demand observed over a period time.
Prediction based methods are used to optimize the overall
performance over most of traffic demands [1]. The oblivious
routing [7] optimizes the worst-case performance over all
traffic demands. MicroTE [4] performs multipath routing by
leveraging the short term and partial predictability of the traffic
demand. SWAN [5] focuses on control when and how much
traffic each service sends. Both MicroTE and SWAN perform
traffic distribution based on a global view of traffic demands
and use OF to coordinate scheduling. As a hybrid approach,
DUCE proactively computes two routing plan: one for normal
conditions and the other for unpredictable situations. However,
its path selection is reactive, triggered by and performed at the
data plane.

VII. CONCLUSION

We have presented the design and evaluation of DUCE.
DUCE delegates the functionality of responding to the bursty
and unpredictable changes in traffic demands to the data plane.
It does not require any changes to the OF switch by fully
utilizing the meter table and group table. In comparison to
the existing approaches, DUCE achieves a better utilization
than standard offline TE approaches; and it also produces a
more stable and load balanced network when the bursty traffic
demands occur. In our future work, we plan to realize it in a
deployed network testbed to further validate its benefits.
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