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Graphical Processing Units have been applied to solve NP-hard problems with no known polynomial time

solutions. An example of such a problem is the Traveling Salesman Problem (TSP). The TSP is one of the

most commonly studied combinatorial optimization problems and has multiple applications in the areas of

engineering, transportation, and logistics. This article presents an improved algorithm for approximating the

TSP on fully connected, symmetric graphs by utilizing the GPU. Our approach improves an existing 2-opt

hill-climbing algorithm with random restarts by considering multiple updates to the current path found in

parallel, and it allows k number of updates per iteration, called k-swap. With our k-swap modification, we

show a speed-up over the existing algorithm of 4.5× to 22.9× on data sets ranging from 1,400 to 33,810 nodes,

respectively.
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1 INTRODUCTION

The Traveling Salesman Problem (TSP) is a well-studied problem in combinatorial optimization

with numerous practical applications found in, but not limited to, the fields of engineering, elec-

tronics, and transportation [1, 7, 10]. The TSP can be stated as this: given a starting city, visit all

other cities exactly once and then return back to the starting city, visiting it exactly twice, with

there being no other such tour that is shorter. Finding such a tour is NP-hard [4] and no poly-

nomial time algorithm is known that can find an exact solution. Approximation algorithms are

sometimes used to find near optimal solutions to problems such as the TSP, which sometimes

incorporate parallelization such as that provided by GPUs.

The TSP problem can be represented as a graph where the vertices, V , are the cities, and the

edges are E, such that an edge from vertex u to vertex v (u,v ) represents a road between u and v .

Each edge is given a non-negative weightw (u,v ). The cost of a tour is given as the sum of the cost
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of each edge that is on the tour. In the fully connected symmetric TSP problem w (u,v ) = w (v,u)
and for all vertices u,v ∈ V , there is an edge (u,v ) ∈ E.

Some examples of approximate algorithms for TSP are genetic algorithms, ant-colony optimiza-

tion, self-organizing maps, and the k-opt family of heuristics [1, 5, 11, 20, 22]. Limitations of pre-

vious work include larger space requirements, small graphs, either no analysis of different config-

urations or limited analysis based on a few iterations of algorithms. For instance, the ant-colony

optimization approach requires each edge to be pre-computed and saved. However, for 2-opt when

using graphs with Euclidian distances, the edge costs can be recomputed and no extra information

is required per edge, giving a memory footprint of O (V ) instead ofO (V + E). 2-opt is a part of the

k-opt family and replaces two edges of a graph if it makes the distance shorter. In Reference [20]

the authors limited their analysis to the 2-opt search and to a few iterations of each.

Iterative hill climbing (IHC) is another heuristic approach and is commonly applied to the graph

TSP problem. This technique works by generating an initial tour, which might not be optimal, and

repeatably applying a heuristic until some acceptance criteria has been reached, i.e., reached some

iteration limit or no possible update is possible. 2-opt is a common heuristic used in IHC and works

by taking two edges, (u,v) and (s,t), in the tour and replaces them with the edges (u,s) and (v,t) if

this change makes the tour shorter. In this case, the IHC algorithm compares each pair of edges in

the current tour, finds the two edges that result in the best swap, swaps them with the alternative

edges, and repeats until there are no new edges that can improve the tour.

The 2-opt algorithm does not guarantee the optimal solution and can converge to local optimal

solutions. However, the IHC 2-opt algorithm tries to mitigate this by randomly generating tours

and applying the 2-opt algorithm to it, allowing for the 2-opt algorithm to potentially find better

tours. The worst case running time of the 2-opt algorithm in the Euclidean plane is exponential,

but the average runtime is shown as O (n6) [6].

One approach to maximize the efficiency of approximation algorithms is to take advantage

of the parallelism provided by GPUs. Originally, GPUs were designed and developed as highly

parallel architectures for rendering graphics with a fixed pipeline for execution. The inclusion

of a programmable pipeline for GPUs allowed for researchers to develop more general purpose

programs using a domain-specific shader language, the first such program being matrix multipli-

cation [9]. Initially, general purpose graphics processing unit (GPGPU) applications were difficult

for which to develop programs, so researchers started writing new APIs and languages to support

general purpose programming [3, 12]. With the introduction of the OpenCL and CUDA APIs, the

landscape changed tremendously [13, 18]. These two APIs can be used in multiple programming

languages while providing access to the underlying GPU hardware. As a result of the introduction

of GPGPUs, there has been a rush to move parallelizable algorithms to the GPU, e.g., machine

learning, optimization, databases [2, 14, 19], and graph problems.

Our work takes a previous implementation of an IHC 2-opt algorithm developed for CUDA

GPUs, which was an extension of the authors’ previous work [15], and modifies it to improve

performance [14]. We decided to extend this work due to its high parallelism and computational

work along with having the theoretical lower bound on the space complexity of Ω(V ). The mo-

tivations for this article are as follows: the extensive number of problems related to the TSP, the

GPU provided a high-performance opportunity, and previous GPU results imposed unneeded lim-

its and used small input sizes. Problems, such as circuit paths, are currently getting larger and

require more efficient algorithms. This leads to parallel solutions due to the limitations of modern

hardware. We chose the GPU due to its costs for the performance provided, natural fit between

the algorithm and architecture, and relatively limited amount of research on the GPU and graph

TSP problem. We decided on this implementation to analyze because at the time of this writing it
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appeared to be one of the fastest TSP approximation algorithms for the GPU. We also found limi-

tations imposed by the algorithm that can lead to how close we can get to the optimal solution.

We modified the existing IHC algorithm to include the variable k , which represents the number

of updates per iteration allowed and call this modification k-swap. We also include the impact of

the configuration on the modified 2-opt algorithm, specifically the GPU configuration, by consid-

ering the number of blocks utilized and introducing a work queue to ensure each block remains

busy. We study the effect of the configuration and modifications on the performance of the k-swap

algorithm. We note that in this article we are not proposing an implementation of the algorithm to

provide an optimal solution which requires costly computational resources. Instead, we improve

the performance of a heuristic that can provide a faster and more accurate approximation to the

optimal solution in a shorter amount of time and at much less computational cost.

In Section 2, we go deeper into the 2-opt algorithm, and in Section 3, we discuss additional

modifications to the algorithms and code. The experimental setup along with a description of each

experiment and its configuration are discussed in Section 4. Next, in Section 5, we show and explain

the results as well as possible areas for improvement. In Sections 6 and 7, we conclude and describe

future work.

2 BACKGROUND

This section provides necessary background information for the Traveling Salesman Problem

(TSP), 2-opt algorithm, and CUDA architecture. We also discuss some of the limitations of the

2-opt GPU algorithm.

2.1 The Traveling Salesman Problem

The Traveling Salesman Problem can be described as such: given a set of cities connected by roads,

in what order should a salesman visit each city such that he leaves his home, visits each city exactly

once, and finally returns home. An additional constraint is that in such a path the distance traveled

or cost is minimized. More formally, Let G be a connected symmetric graph with a set of vertices

V, edges E, and weight function f : E → R, where f(v,v) = 0. To form a tour T on G, we visit each

vertex in V such that the first and last vertex visited is the same and all other vertices have only been

visited once. The tour T can be formulated as an ordered set of vertices such that if two elements

are adjacent, vi and vi+1, then the second was visited directly following the first and the edge

(vi ,vi+1) was used to get there. The length of T is denoted as the sum
∑

vi ∈T f (vi ,v (i+1 mod ( |V+1 |) )
for i ∈ {1, 2, . . . , |V |}. Solving the Traveling Salesman Problem is finding a Hamiltonian circuit of

a complete graph with minimal cost of the weighted edges.

2.2 2-Opt

The 2-opt heuristic of the Traveling Salesmen Problem works by taking two edges from a given

tour and replacing them with two different edges such that it reduces the length of the tour [5]. In

the algorithm, all possible pairs of vertices are examined and exchanges or swaps between pairs

of edges are considered. For each pair of edges, if swapping the two edges provides a shorter tour,

existing paths are swapped and the edges reordered. The algorithm then considers the next pair

of edges. The algorithm stops when no new pairs that can decrease the tour length are found.

The 2-opt TSP utilizes a random iterative hill-climbing approach that starts from a randomly

generated candidate tour. The 2-opt TSP algorithm iterates until no more swaps can improve the

tour, in essence until a local optimum has been found. A hill-climbing strategy will become stuck

in a locally optimal solution, requiring a new randomly generated candidate tour to begin a new

local search. Once the current best tour has been found and recorded, the strategy restarts from
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Fig. 1. A 2-opt swap.

Fig. 2. Tours before and after a 2-opt operation. Red denotes nodes that were reconnected; green represents

elements that were reversed.

a new randomly generated candidate tour so a new climb can begin. After each climb, the local

optimum obtained is compared to the shortest tour found thus far, to find a new global minimum.

In Figure 1, the edges (i, l) and (j, k) can be swapped with the edges (i, j) and (k, l). This swap

results in paths that no longer cross. The 2-opt algorithm utilizes the triangle inequality to reduce

the length of the tour, i.e., reordering edges for paths that cross over so that the paths no longer

cross. As can be seen in Figure 1, when swapping two edges on a tour there is only one alternative

way to reconnect that produces a shorter valid tour.

In Figure 2(a) a more complex graph with 13 nodes is illustrated. The 2-opt algorithm has deter-

mined that swapping the edges (7,8) and (11,12) with (7,11) and (8,12) can reduce the tour length.

Figure 2(b) shows the resulting changes in the graph and tour set with the changes highlighted.

Note that the direction of the edges can also change to preserve a legal tour, resulting in a reversal

of the path. When (7,8) and (11,12) are swapped, the path (8,9,10,11) is reversed. After the 2-opt

algorithm is applied, the nodes in the path 7, 8, 9, 10, 11, 12 are reordered to create the new path

7, 11, 10, 9, 8, 12.

One of the first scalable parallel 2-opt algorithms was presented in Verhoeven et al. [21], in

which a tour is divided among multiple transputers1 by edges. Edges are swapped by rotating the

tour among transputers. On each transputer, it tries to perform the 2-opt swap for each possible

edge and then gives an edge to an adjacent transputer while accepting a new edge from another

adjacent transputer.

1An early parallel system on a chip architecture that was defeated by costs and newer superscalar architectures.
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When using GPGPU for parallel algorithms, there are two designs of the 2-opt algorithm. In

the first design, the entire algorithm is created on the GPU. In the second design the algorithm is

divided into multiple parts where some work is computed on the GPU then updates are performed

on the CPU. In Fosin et al. and Rocki et al. [8, 17] the CPU generates an initial path, performs

the 2-opt heuristic on the GPU, then returns control to the CPU to apply updates and performs a

random swap. This process then repeats. In this article, we modify the work of O’Neil et al. [14],

which implemented a GPU version of the 2-opt algorithm. In their work, the authors use shared-

memory caching to reduce memory bottlenecks and recompute values instead of storing them in

memory.

2.3 NVIDIA CUDA Architecture

CUDA enabled NVIDIA GPUs contain a set of processors, global memory, texture memory, and

constant memory, including an L2 cache. Each processor contains its own local resources, e.g.,

registers, shared memory, local memory, and L1 cache, which are not accessible to other processors.

The overall program is at the highest level and contains independent blocks, which handle their

own set of resources that cannot be shared outside the block. Each block is assigned to a processor

where it resides until it has completed. Blocks are then further divided into warps, which are

groups of 32 threads all running in a SIMD fashion.

During execution, each processor will select some number of warps to run from the blocks

assigned to it. The hardware limitations of the compute capability determine the number of warps

that can run. Each warp is either labeled as ready to execute or blocking. All warps will continue to

execute until they have to block, either due to memory fetching or other resource limitations, and

any ready warp will be scheduled to execute. Since there are more warps than can be executed,

the hardware can hide latencies by swapping out blocking warps with ready warps. If there are

no ready warps, then execution halts until a warp is ready. Each thread in a warp is composed of

its own local resources, which cannot be shared, as well as resources shared among both threads

in a block and resources shared among the entire grid.

To develop applications for CUDA, the user must write a kernel global function that is executed

on the GPU device and is called from the CPU host. When calling a kernel function from the

host, the user must also specify a configuration that controls how many blocks are created and

how many threads are in each block. Optionally, the user can also dynamically allocate shared

memory.

3 IMPROVEMENTS

Graph algorithms can pose issues during the parallelization portion of the algorithm as it is not

always clear how to partition the work and data. The 2-opt algorithm is one of the few graph algo-

rithms that can be parallelized efficiently, because finding swaps are independent. In this article,

we take an existing GPU 2-opt implementation [14] and make changes to improve its scalability

and performance. Issues we need to address to provide improvements in the original 2-opt im-

plementation are architectural and algorithmic. After applying some initial modifications to the

code related to memory and number of restarts, we address architectural limitations of the orig-

inal 2-opt implementation by limiting the number of blocks and adding a work queue. We then

propose a modification to the 2-opt algorithm, called k-swap, that limits the number of updates.

In the following subsections, we elaborate the improvements in detail starting with a description

of the original algorithm before any modifications. We note that the approach presented in this

article is not GPU dependent. The GPU thread blocks can be abstracted for processors or virtual

processors, whereby each thread in a GPU can map to a lightweight thread with the appropriate

synchronization.
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Fig. 3. Pseudocode for original implementation.

3.1 Original CUDA 2-Opt Algorithm

The code for the original 2-opt algorithm appears in Figure 3. The original implementation con-

sists of a single monolithic function to perform the initial random generation, search, and update

phases. Prior to executing the code in Figure 3, the program starts by computing the best possible

number of threads per block and the maximum amount of shared memory that it can allocate to

each block. From examining the thread count selection algorithm [14], we find that it selects the

minimum of either 128 threads or the number of cities in the graph. This version of the code is a

self-contained kernel function in which a block copies the original tour to a pre-allocated memory

location for the block, permutes the tour using the block id as a seed, and then computes the edge

weights. Each block handles a single random graph and assigns the graph to its threads.

The code in Figure 3 is a parallel-for loop at the thread-block granularity where each different

thread starts a different random tour. The variable BEST is a thread local variable (lines 1–3) that

is used by each thread to identify their current shortest tour. Each thread begins by selecting a

city at the position in the tour equal to their threadID (lines 5–8), resulting in a consecutive block

of cities to be loaded into SHARED (line 10). Each thread then calculates the tour length change

if they were to swap with the last city in the tour, then the next to last city, and so on, saving

the current best possible swap seen (lines 12–17). After each thread has evaluated each pair of

cities, the block of cities is shifted down to the next consecutive unseen cities (line 9). This process

continues by moving the front cities until there are no more cities. The max(BEST) identifies the

tour with the maximum decrease in the graph, in essence, the minimum tour length among all

threads, and then the swap is performed (lines 21 and 22).

By organizing the computation in this way each thread can examine the exact same back city

(denoted by the variable j in the for-loop starting in line 9) at the same time. This allows for shared
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memory to be utilized as a cache that is pre-loaded with adjacent cities starting from the back of

the tour. A broadcast of the data will get the next value for the back city to all threads efficiently.

Once the back city has reached the front, the threads load the next city to use as the front. This

will be number_threads away in the tour. It then repeats the process. After each pair of cities has

been evaluated, we take the best swap from all the threads, apply that swap, and restart the process

again with a new randomly generated tour. The process terminates when no new swap is found.

The results are copied to the host from the GPU when all blocks have terminated.

3.2 Initial Code Modifications

We discovered that there was a scalability issue on the number of random tours attempted in the

original 2-opt implementation. This is because each block only works with a single tour and each

block must have memory allocated upfront. Since there is no memory allocation on the device side,

all memory allocations were performed on the host side and addresses were passed in through the

kernel call. For our first modification, we employ the use of C++ templates, which lets our program

allocate shared memory in the kernel and not through the kernel call. In other words, we can use

the template parameter to specify the exact amount of memory to allocate in the kernel. This can

lead to a micro-optimization and increase performance if we continuously run the algorithm on

multiple graphs. For the next modification, we pass pointers to shared memory with the restrict

modifier, which informs the compiler that this pointer will not point to memory that overlaps with

any other pointer. Therefore, we reduce any temporary variables, which would have been required

if the compiler could not determine memory accesses that would not overlap.

3.3 Architectural Modifications

Our next step was to increase the sizes of the graphs allowable and increase the maximum number

of feasible restarts by building on the code modification in the above section. We accomplish this

using a fixed number of blocks and a work queue.

3.3.1 Fixed Number of Blocks. As mentioned in the previous section, one of the limits to the

scalability of the original 2-opt implementation was due to memory allocation being performed

from the host and not the device. The maximum number of restarts (Rmax ) was a linear relationship

described by the equation

Rmax =min(MaxBlockLimit ,TotalMem/|G |),
where |G| is defined as the size of the graph G, MaxBlockLimit is the maximum number of blocks

that can be scheduled and TotalMem is the amount of memory on the GPU. Once the memory allo-

cation on the GPU was moved from the host side to the GPU, the new equation for the maximum

number of restarts (Rmax ) is the following:

Rmax =

{
MaxBlockLimit (MaxActiveBlocks ∗ |G |) ≤ TotalMem
0 otherwise,

where MaxActiveBlocks is the maximum number of blocks that can be active on the GPU. Each

block allocates and deallocates all memory when it starts running and when it has finished running.

Note that a schedulable block will sleep until it is activated, and once a block starts a job it cannot

stop until its job has finished. Taking into account the MaxActiveBlocks and the fact that only a

small subset of running blocks can be active allows each block to allocate more memory.

If we have more blocks scheduled than can be run on the GPU, then memory must be allo-

cated on the CPU for each block and grows linearly in terms of restarts. (Restarts are described

in Section 2.2.) The new equation for Rmax allows fixing the number of blocks to the GPU’s block

execution limit, which is the number of blocks that can be executed in parallel. In addition, mem-

ory is allocated only once for each block and all of the memory used is on the GPU. As a result,

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1. Publication date: January 2018.



1:8 J. A. Robinson et al.

there is no limit on the number of restarts and the constraints on the maximum size of the graph

are relaxed with respect to the number of restarts. Since each block performs the same algorithm,

we divide the restarts among the blocks and reuse the resources allocated. This insight allows us

to have as many restarts as wanted, given there is enough memory to hold a single tour on a block

and each launched block is given some number of restarts.

During our experiments, we noticed blocks being scheduled to run once and then terminating in

the original 2-opt implementation. This resulted in a small performance degradation and could also

result in hardware degradation. In our fixed block modification, each block will execute multiple

restarts before it is terminated, removing this performance degradation.

3.3.2 Work Queue. With a fixed number of blocks, we needed a work scheduling algorithm and

initially decided on a naive solution of dividing the work evenly among the blocks. In addition to

the naive approach for a work scheduling algorithm, we also consider that of dynamically allocat-

ing work as needed using a work queue. In our fixed block modification, we gave each block an

even number of tours, which leads to some blocks finishing before others. To ensure that we utilize

the full resources of the GPU, we need each block busy, which is solved by using a work queue

implemented on the GPU. We used a simple queue implementation that returns a single integer

value representing the starting tour on which to run 2-opt. Our queue works by performing an

atomic addition operation to a global integer variable to keep track of how many tours have been

distributed to the blocks. Each block can see and modify this global variable, which is incremented

by how many graphs are generated. If Q number of tours are to be scheduled per block, then the

block calls a method that uses the Q as the starting number of the graphs that will be generated.

Q is also used to determine the ending graph numbers, allowing the iteration through each graph

and the generation of a random permutation of the vertices representing the graph. To determine

the best strategy, we experimented with several work queue configurations for different values for

Q, with the results presented in Section 5.4.

3.4 Algorithm Modification—K-swap and∞-swap

Upon further examination of the algorithm, we determined that because each thread could possibly

find a valid update to the tour, it could be possible to apply more than one update during the

update phase. This led to our main contribution being the application of multiple updates to the

tour found by each thread in the search phase. The update phase is modified to repeatably apply

the best update that does not break the tour or overwrite a previous update. One of our concerns

about the original algorithm was that we would find the same updates multiple times during the

algorithm, leading to redundant work. This led to our modification to apply all updates in order

of greatest improvement where they do not contradict previous updates.

In addition, due to the way the tour is stored, when some updates are applied they leave re-

maining candidate updates referencing positions in the tour that have moved. This is mitigated by

discarding any update that overlaps the current best update with regard to the tour between the

updated edges. As an example of an invalidated update, we consider the graph in Figure 4. Possi-

ble swaps involve the crossed edges (5,6) and (7,8) as well as (5,6) and (3,8) in the top graph. If the

swap (5,6) and (7,8) is the better swap, then the update (5,6) and (3,8) becomes invalid, because the

edge (5,6) is no longer in the graph. Hence, any update that matches this scenario must be ignored

due to invalidation. Any update that is in between is also ignored due to invalidation. The bottom

graph shows the graph resulting from the swap.

One of the expectations that arose was that placing a limit on the number of updates applied

could lead to better performance. We tested different numbers of allowable updates per iteration

and introduce the variable k , where k represents the number of swaps allowed. The final version
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Fig. 4. Invalidation example.

Fig. 5. Pseudocode for k-swap implementation with the assumption of k available swaps.

of the modified algorithm is our k-swap algorithm, and if we allow unlimited updates, we call it

∞-swap. Figure 5 illustrates the changes to the original code in Figure 3 that are necessary to

include the k-swap. Lines 21 and 22 of the original code are replaced by the code that finds the k
best swaps instead of a single swap.

4 EXPERIMENTS

In this section, we discuss the goals of our article, introduce terms and definitions, and discuss our

dataset and metrics. We also describe the types of experiments and experimental setting, and we

conclude with threats to validity.
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4.1 Definition and Context

Our goals are to show how the configuration and modification of an algorithm affect its perfor-

mance and results. The configuration of the algorithm includes several parameters: the number of

threads (T), the number of nodes (N), the amount of shared memory allocated (S), the number of

tour updates per iteration allowed (k), the number of random tours (R), and the input data. The

value of T is the number of threads that are within a block and S is the number of shared-memory

elements, where each element is a triplet composed of the x and y coordinates of a node and the

cost on the edge from that node to its neighbor in the tour. The values of T and S are from the

set {32, . . . , 32 ∗ i, . . . , 1024}. The values chosen for k are from the set {1, . . . , 2i , . . . , 256} ∪ {∞}.
In the text, we substitute the value ∞ for k, such that ∞-swap denotes an unlimited number of

swaps.

In addition to the configurations above, we also examined how a work queue would affect per-

formance. We tested a simple work queue that would give out a fixed amount of work (Q) to a

block as requested. The value of Q can either be 1 tour, 100 tours, or T. When the value of Q is T,

we say that the queue is disabled and the work is evenly divided among the blocks, e.g., no queue.

4.2 Data Sets

TSPLIB2 is a collection of problem instances for the TSP [16] and has been used extensively in

the TSP literature for benchmarking purposes. We are limited to using problems with the type

EUC_2D, which allows for graphs where distances are Euclidean and lie in the x-y plane. The

subset of problems we select are fl417, fl1400, fl3795, fnl4461, pla7397, usa13509, and pla33810. For

each of the problems the numerical values appended represent the number of nodes in the graph

and the prefix represents the type of problem.

4.3 Metrics

Previous work has used the number of 2-opt operations per second to record the performance. The

modification of our algorithm significantly reduces the number of 2-opt operations per second but

still generates equitable results, so that 2-opt moves per second is no longer a valid metric. We focus

on other metrics, including duration and tour lengths, and quality of the tour lengths. Duration

is recorded in milliseconds but is presented in seconds. The results are unitless and the quality of

the result is the percentage of original implementation results.

4.4 Types of Experiments

Our hypothesis is that our modifications will improve the performance and the quality of the

result. To reiterate, our modifications are the following: a reduced number of blocks, inclusion

of a work queue, and incorporating k-swap. To determine the impact of these modifications on

program performance and solution quality, we have designed the following experiments.

To study the affect of the k-swap value on the program performance and solution quality, we

test different values of k-swap on six selected TSP problems and compare the results to the orig-

inal implementation. In this experiment, we use a simple work queue. Each problem instance is

given 1,000 random tours with the maximum number of threads and maximum amount of shared

memory. We set the swap counts to powers of 2 ranging from 1 to 128. We also look at k =∞. We

do this for all data sets except pla33810, due to limitations in the original algorithm’s implemen-

tation. The input file pla33810 has over 33,000 nodes and is run on a subset of the k-swap values,

specifically, 1, 4, 64, 128, 256, and∞-swap, due to time constraints.

2http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.
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To examine the effect of the thread and shared-memory configuration on the program perfor-

mance and solution quality, we run our final version of our algorithm using the TSP problems

fl1400, fl3795, and fl7397. These experiments are very time intensive, so for this experiment, we

chose the largest three data sets that can produce results in a reasonable amount of time. We run

each problem on multiple threads and shared-memory configurations, set k-swap equal to∞-swap,

and use the simple work queue. The number of threads and amount of shared-memory elements

range from 32 to 1,024—generating a total of 1,024 results per TSP instance.

To compare the original version and the final version, we perform two experiments. In the first

experiment we determine if there is any change in the quality of the solutions generated by the

original algorithm compared to our modified algorithm. We run the original and final modified

algorithms 1,000 times with 1,000 random tours each on the TSP problem fl1400 and fl3795. Because

the original algorithm is extremely slow for many of the data sets, but ran in a reasonable amount

of time for the fl1400 and fl3795, these data sets were chosen for a comparison in this experiment.

The second experiment is used to determine the quality of the solutions we generate when both

programs are given an identical amount of time. For this, we perform the same experiment above

for the original algorithm, but we change the number of random tours to 8,255 for the final version.

The purpose of this experiment is to compare the quality of solution when both programs are given

the same amount of time.

Our final experiment examines multiple queue configurations and their impact on performance.

In addition to different queue configurations, we also examined how the queue would be affected

by hardware. In this experiment each run is given 10K, 100K, and 1M random tours, and a Q of

1, 100, or an equal amount of work. We also selected the number of blocks to be either 10K or

the maximum resident blocks that the card can hold. For this experiment, we choose the problem

fnl4461.

To decide on how many blocks to start, we use the CUDA API to obtain the exact number of

active blocks that a card can support, which is fixed per the architecture. We choose between

this number and the restart count, requiring allocation of memory once for each block instead of

multiple times per random restart. We use the CUDA timers for measuring the execution time. For

quality purposes, we use the Welch two sample t-test to compare the quality of our solutions to

the original.

4.5 Setting

We have two machines on which we run our experiments. Each machine is running Windows

7 and uses CUDA Release version 6.5. The first machine has an Intel i3 with 16GB of system

RAM and a GTX 780 with 3GB of GPU RAM. The second machine has an AMD Phenom II X4

965 Processor with 16GB of system RAM and has a GTX 650 Ti with 2GB of GPU RAM. During

experiments all non-necessary services and programs were terminated and all video output was

performed through an alternative GPU card. We used the 2013 Visual Studio compiler with the

CUDA compiler version 6.5.10 with the flags:

−Xcompiler ′′−Ox ′′ −O3 − use_f ast_math − lineinf o − −ptxas − options = −v
−m64 − дencodearch = compute_35, code = sm_35.

4.6 Threats to Validity

Because of the length of time to run all configurations on a problem set, we could not run them

multiple times. This can lead to noise in the data, skewing our results and conclusions. While we

did not run each configuration multiple times to smooth out noise, we did identify patterns that

occur between different problem instances.
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In addition to multiple runs per configuration, we could have tested larger datasets. This was

also not feasible, as we estimated the time to compute the next largest dataset, usa13509, would

take approximately a month to complete for testing all configurations on our setup.

5 RESULTS

In this section, we first present our main contribution, k-swap, and how different values affect

the generated solutions and performance. The second section presents results pertaining to how

the runtime configuration of our algorithm affects the performance and solutions. In these ex-

periments, each thread configuration is in terms of how many threads are in each block and the

shared-memory configuration is in terms of nodes, where each node holds all information required

to make a decision about a city for swapping. Then, we look at how the quality of our algorithm

compares with the initial algorithm. Finally, we talk about how a work queue affects the duration

of the algorithm. All the results in Sections 5.1–5.3 were generated using the GTX 780 GPU, while

both the GTX 780 and 650Ti were used in Section 5.4.

5.1 Effects of K-swap

Figure 6(a) illustrates the speed-up provided by k-swap compared to the original 2-opt algorithm

as the number of values of k varies from 1 to∞. In general, we found that increasing the number

of allowed updates after the searching phase increased performance significantly, as shown in

Figure 6(a). However, some problem instances did not keep increasing as the number of allowed

swaps increased, but reached a maximum performance gain beforehand. An example is pla7397,

which reaches its peak at 256 allowed swaps.

For problem pla33810, the original implementation cannot run the graph due to constraints in

the original programming, which places a limit on size. Therefore, speedups are compared to the

runtime when we only allow a single swap. For all other problems, there is a performance drop

with our version when compared to the original when a single allowed update is allowed. For all

other swap values, we achieve a speedup. We found that our speedups range from 1.48 to 23.48

with smaller graphs achieving smaller overall speedups, while larger graphs achieve much higher

speedups.

To see how the k-swap value affects the tours found, we recorded the best tour lengths found,

and we present them in Figure 6(b). These results show the ratio of the tour found using the given k-

swap value against the tour length found by the original implementation for each problem instance.

As before, we could not run pla33810 on the original version due to limitations on tour sizes, so the

values presented occur when the k-swap value is one. We found that the tour ratio values range

from 0.9947 to 1.0046 with an average of 0.9992 and standard deviation of 0.0022. While most tour

lengths found by k-swap were shorter than those found by the original implementation, this is not

true of all tour lengths, as shown in Figure 6(b). However, because we are able to find a solution

in faster time with k-swap, we could potentially run k-swap with even more random restarts and

get even shorter tours. This will be explored in our future work.

From the results shown in Figure 6(a), we see that increasing the k-swap values provides a large

performance gain, with larger gains for larger problems. However, for smaller problems, we see

that after a certain threshold the amount of gains begins to decrease. This is because as the graph

gets smaller, the probability of updates being invalidated increases. This result also implies that as

the graph gets smaller and the k-swap value increases the larger improvements are discarded due to

invalidation. (A discussion of invalidation appears in Section 3.4.) The current theoretical speedup

is 1,024, because each block is allowed to only have 1,024 threads as each thread only handles a

single update. Allowing for threads to keep a list of top updates they have seen can expand this

theoretical bound even higher. Additionally, this approach will only work for sufficiently large
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Fig. 6. Given different k-values, we present speedup 6(a) and proportion of tour lengths of our algorithm

compared to original 6(b).

problem instances due to the overhead required to keep track of the top updates and then apply

them.

5.2 Effects of Configuration: Results

5.2.1 Runtime Per Thread. We expect that having more threads results in better performance,

because the amount of memory fetches is proportional to the number of threads, f etches ∈
O (N 2/T + N ). The minimum, maximum, and average runtimes as the number of threads increases,

appear in Figures 7(a), 7(b), and 7(c), for graphs with 1,400, 3,795, and 7,397 nodes, respectively. In

Figure 7, the x-axis corresponds to the number of threads per block and the y-axis is a log scale
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Fig. 7. The minimum, average, and worst case runtime per thread configuration. The x-axis corresponds to

the number of threads per block and the y-axis is a log scale with units of seconds representing the duration

of the algorithm.
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Fig. 8. Shared-memory configuration per thread count configuration which results in the best runtime

performance.

with units of seconds representing the duration of the algorithm. We found that the worst perfor-

mance occurs when using 32 threads for all problem instances. The two larger problem instances

(3,795 and 7,397 nodes) achieve the best performance with 1,024 threads and the smaller problem

instance (1,400 nodes) achieves the best performance with 288 threads as shown in Figure 7. We

also see that for all problem instances, an increase from 512 to 544 and 672 to 704 threads resulted

in a performance drop, with smaller reductions as the problem instance size increases. This drop is

caused by a reduction in the number of active blocks. Because only 2,048 threads can be allocated

per block, we have 	 2,048
thr eads


 blocks active, leaving threads underutilized for some thread sizes.

We also see from the graphs that our assumption that more threads would lead to better per-

formance is validated for the larger problem instances. For the smaller problem instance, we find

that performance peaks at 288 threads and then periodically remains stable, with performance

decreasing as we add more threads. This is because the amount of work performed in the search

phase isO (N 2/T + N ) on the number of vertices and the update phase isO (Tloд(T ) + N /T ) on the

number of threads, with a large constant due to a high density of synchronization calls. This means

for smaller problems with more threads the search phase can be dominated by the update phase

where, as before, the update phase was constant. In addition, as the size of the graph grows the

probability of two swaps overlapping decreases, and as the number of threads increases the prob-

ability of invalidation increases. This implies that more speedup can be attained for larger graphs

with more threads. However, for smaller graphs with more threads the amount of invalidations

increase. This makes the overhead of invalidation resulting in no speedup or negative speedup.

5.2.2 Shared Memory Per Thread. Figure 8 presents the shared-memory configuration (number

of memory elements) for which a given thread configuration resulted in the best performance

for the problem instances fl1400, fl3795, and pla7397. For the two smaller problem instances, the

shared-memory values range from 64 to 512 elements, and after 512 threads the shared-memory
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Fig. 9. Box-plots for pla7397 which give the minimum, first-quartile, median, third-quartile, and maximum

lengths found for each configuration value.

configuration plateaus at 512 for the best performance. The largest problem instance has shared-

memory values ranging from 64 to 1,024 for the best performance and has an overall increasing

trend as the number of threads increases. We expected that the shared-memory and thread values

for the best performance would be increasing due to the fact that as the ratio of shared memory to

thread increases, the number of active blocks allowed decreases, similar to the curve for pla7397.

For the other two problem instances, we believe that the amount of work per thread and shared

memory per thread are the limiting factors.

5.2.3 Length Per Thread and Shared Memory. In addition to performance, we also examined the

solutions (tour length) generated by different configurations of thread count and shared memory

for fl1400, fl3795, and pla7397. For shared memory, the tour length median values do not appear

to have any correlation with the configuration. In Figure 9, we illustrate for pla7397 the results

for thread count and shared memory as histograms in Figures 9(a) and 9(b), respectively. At first

glance, there appears to be a slight correlation between the thread configuration and the median

values for pla7397 in Figure 9(a) and also for fl3795, although not shown here. We did not observe

any such correlation for fl1400. We also found that for pla7397 with a thread configuration of 32,

we always generate the same solution and for fl1400 the runtime configuration of 640 threads with

32 shared-memory elements generates an outlier with a tour length of 20,108 consistently.
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Table 1. Hypothesis Tests with Alpha-level of 0.05 and Null-hypothesis

“The Correlation Between Configuration Value and Length Is

Non-negative”

Configuration Problem Correlation P-value Decision

Shared memory

fl1400 −0.1265 0.2467 Retain

fl3795 −0.4159 0.0086 Reject

pla7397 −5380 0.0006 Reject

Thread count

fl1400 −0.3035 0.0457 Reject

fl3795 −0.8332 5.4E-11 Reject

pla7397 −0.8234 1.6E-10 Reject

5.2.4 Solution Quality and Configuration. Due to how graphs are generated and how the algo-

rithm works, we did not expect any correlation between solution quality and configuration. To

see if the configurations had any affect on the solution quality, we used Fisher’s z-transform with

a null-hypothesis that the correlation between configuration value and tour length is non-negative.

Using an α-level of 0.05, we found that we reject the null-hypothesis in all cases except for the

shared-memory configuration as shown in Table 1. We believe that the test fails to reject the null-

hypothesis for fl1400 because of the extreme outlier at 32 shared-memory elements, and without

this outlier the result would have been a rejection.

5.2.5 Runtime Per Shared Memory. For all shared-memory configurations the best runtime ap-

pears to be independent of the shared-memory values as shown in Figure 10. However, the worst

runtime monotonically increases as the shared-memory configuration increases. In Figure 10 the

x-axis is the amount of shared memory allocated in terms of information stored by each node in

the graph, and the y-axis is a log scale with units of seconds representing the duration of the al-

gorithm. This figure illustrates the following: for a given amount of shared memory, how many

threads give optimal performance. The average runtime for each problem instance begins around

7–12% of the distance between min and max and quickly reduces to 6% of the distance between the

two. The worst min runtime occurs at 32 threads for all problem instances, and the curves for the

best duration are centered around 288, 960, and 1,024 threads for problem instances fl1400, fl3795,

and pla7397, respectively. The worst min runtime occurs at 32 threads because of three reasons:

the runtime of the search phase is O (N 2/T + N ), shared memory is limited, and 128 threads is

the largest number of threads before the number of active blocks decreases. Because the search

phase speedup is determined by the number of threads, this means fewer threads result in worse

performance for large enough graphs. Because shared memory is limited, we can only allocate at

most 3,072 bytes per block, or 256 elements, to achieve the maximum active block amount with

32 threads. With 1,024 elements per block out of 48KB of shared memory, we can have at most 4

active blocks per SMX, resulting in 128 active threads. From this, we can state that no matter what

shared-memory configuration we choose, we can always find a thread configuration that results

in good performance.

5.2.6 Thread Count Per Shared Memory. In Figure 11, we show the shared-memory configu-

ration, given the specific thread value, which resulted in the best runtime for the 1,400, 3,795,

and 7,397 node graphs. For fl3795 and pla7397, we see that the best performance occurs when the

thread configuration is at or near 1,024 threads for most shared-memory configurations; however,
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Fig. 10. The minimum, average, and worst case runtime per shared-memory configuration. The x-axis is the

amount of shared memory allocated in terms of information stored by each node in the graph and the y-axis

is a log scale with units of seconds representing the duration of the algorithm.
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Fig. 11. Best thread count configuration per shared memory configuration.

Fig. 12. Distribution of lengths with the original graph or with the modified version given equal time or

equal work. Panel (a) presents results for fl1400 and panel (b) for fl3795.

for fl1400 the result is more erratic. As mentioned previously, we expected more threads to lead to

better performance, which the curves for fl3795 and pla7397 illustrate.

5.3 Comparison of Solution Quality

As we expected, as shown in Figure 12(a), giving our k-swap algorithm the same amount of time

as the original version of the algorithm resulted in shorter tour lengths for both graphs fl1400 and

fl3795. The k-swap algorithm also provides shorter tour lengths when the same amount of work, in

terms of number of restarts, is given to both algorithms for the graph with 3,795 nodes as shown

in Figure 12(b). However, with the same amount of work, the original version results in slightly

shorter tours for the smaller graph fl1400. We find that in our experiment k-swap provides the most

advantage for the larger graphs. In future work, we would like to further study our implementation

with larger problem sets. Unfortunately, we estimate the experiment with the next larger problem

instance would take four months to complete with the current experimental configuration.
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Table 2. Results of the Queue With the Number of Blocks Limited to 10K Blocks with Problem

inStance fnl4461

Restarts Time w/ 1 Time w/ 100 No Queue

10,000 2,186 1,982 2,186

100,000 19,665 19,664 21,627

1,000,000 197,704 197,704 218,752

(a)GTX 650 Ti with 10K blocks

Restarts Time w/ 1 Time w/ 100 No Queue

10,000 707 787 689

100,000 7,068 7,126 6,887

1,000,000 70,688 70,761 68,886

(b)GTX 780 with 10K blocks

Table 3. Results of the Queue with the Number of Blocks Limited to the Maximum Resident Blocks per

Card With Problem Instance fnl4461

Restarts Time w/ 1 Time w/ 100 No Queue

10,000 1963 1192 2178

100,000 19653 19662 21853

1,000,000 196564 196564 218711

(a)GTX 650Ti with 64 blocks

Restarts Time w/ 1 Time w/ 100 No Queue

10,000 707 787 689

100,000 7069 7126 6886

1,000,000 70688 70749 68886

(b)GTX 780 with 192 blocks

5.4 Effects of a Work Queue

As shown in Tables 2(a) and 3(a), there is a positive linear correlation between the duration and the

number of restarts. For the GTX 650, the best performance occurs with a work queue. The runtimes

are shorter with a work queue than without a work queue for the GTX 650, with the longer queue

providing a larger improvement for fewer restarts. We see that the duration differences between a

queue of size 1 and a queue of size 100 becomes negligible as the number of restarts increases. Our

results show that scheduling fewer blocks does not negatively affect performance as expected.

Given either 10K blocks or the maximum hardware limit for active blocks, we achieve similar

runtimes for the same work queue and tour count configurations.

In our experiments, however, the work queue hurts performance for the GTX 780. As shown

in Tables 2(b) and 3(b), having no queue for the GTX 780 results in better performance for each

different number of random tours. We believe that the difference between the two GPUs is due

to the architecture and hardware. The GTX 780 has more memory bandwidth and a higher clock

frequency than the GTX 650, and in addition the compute architecture is 3.5 versus 3.0. The new

compute capability of the 780 provides increased computational performance and thread memory

instructions that allow for threads in a warp to share data. We believe that this improvement in

performance for computation puts a bottleneck on expensive memory operations such as atomic

memory operations.

6 CONCLUSION

The Traveling Salesman Problem is an important NP-hard problem connected to many real-world

issues. As of this writing and for the foreseeable future, there does not exist any polynomial time

algorithm to solve all instances of the TSP. Because of this, we are left with approximation algo-

rithms, of which an iterative hill-climbing method using 2-opt is one. In this article, we presented

our k-swap modification of an existing iterative hill-climbing 2-opt algorithm implemented for

the GPU. We have shown that with our modifications there is a substantial speedup without a

reduction in the quality of the result by applying the k-swap method. Our results showed that
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common assumptions on how to get good performance for the GPU are not always true, such as

saturating the GPU with blocks. Instead, for problems in which one can deterministically enumer-

ate the search space, the number of active blocks can be limited as determined by the hardware.

This property allows for reduced memory allocation. Since each block can allocate the amount of

memory upfront, the result is the ability to use a limited amount of memory. For our problem, and

those that have a similar layout in which we perform some global search and apply an update, we

present configuration values that result in maximal performance.

7 FUTURE WORK

In a future version, we would like for multiple swaps to happen in parallel and to determine a

way to reduce the number of swaps we have to invalidate. Future work could also consider more

advanced k-opt versions such as 3-opt and k-opt and determine what limitations the GPU presents

for those algorithms. One current limitation we have now is that if a graph is too large, then we

might not be able fill the GPU with blocks. To use all the resources, we would have to distribute a

single tour across multiple blocks, requiring interblock communication, which would be beneficial

for many other problems. We also believe a more in-depth study of work queues would be benefi-

cial not only for our problem but other work as well. From a theoretical standpoint, we would like

to see bounds on the runtime as well as the efficiency of our algorithm.
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