Easy Path Programming: Elevate Abstraction Level
for Network Functions

Fei Chen, Chunming Wu, Xiaoyan Hong, and Bin Wang

Abstract—As datacenter networks become increasingly pro-
grammable with proliferating network functions, network pro-
gramming languages have emerged to simplify the program
development of the network functions. While network functions
exhibit high level abstraction over operations on the traffic
flow and the interconnections among the operations, the existing
languages usually require programming with detailed knowledge
about the packet processing patterns at the switches. Such a mis-
match between the program abstraction and development details
makes developing network functions a nontrivial task. To solve
the problem, this paper introduces the Easy Path Programming
(EP2) framework. EP2 offers a high-level abstraction to simplify
the program design process of the network functions. EP2
also provides a language that captures the common properties
of network functions and uses predicates and primitives as
basic language components. Specifically, predicates describe when
to handle a flow with a global view of the flow dynamics;
and primitives describe how to choose a path for a specific
flow. Further, EP2 has its own runtime system to support the
language and the abstraction model, especially to hide the low
level packet-processing behavior at the data plane from the
programmers. Throughout this paper, cases are given to illustrate
the EP2 abstraction model, language details and benefits. The
expressiveness of EP2, the potential overhead of the runtime
system and the efficiency of the network functions generated
by EP2 are evaluated. The results show that EP2 can achieve
comparable performance while reducing programming efforts.

Index Terms—Software-defined networking, network program-
ming model, network function abstraction, data-plane program-
ming, network functions, network programming language

I. INTRODUCTION

Datacenter networks are increasingly programmable with
network functions proliferating. Network functions range from
load balancing [1]-[3], flow scheduling [4], [5] to congestion
control [6], [7] and Quality of Service (QoS) [8], [9]. Today’s
datacenter workloads impose stringent requirements on the
implementation of these network functions. First, datacenter
traffic is very bursty and unpredictable [3], [10]-[13]. Given
the high frequencies at which demands change and flows
arrive, programmers should implement network functions that
process packets in the data plane. Second, datacenter network

Manuscript received March 20, 2017; revised September 15, 2017; accepted
October 27, 2017.

Fei Chen and Chunming Wu are with the College of Computer Science
and Technology, Zhejiang University, China (e-mail: fei_chen@zju.edu.cn;
wuchunming @zju.edu.cn).

Xiaoyan Hong is with the Department of Computer Science, University of
Alabama, USA (e-mail: hxy @cs.ua.edu).

Bin Wang was with the Zhejiang University. He is now with
Hangzhou Hikvision Digital Technology Co.Ltd., China (e-mail:
wbin2006 @ gmail.com).

comprises a large number of physical devices [9]. Program-
ming a collection of distributed switches requires manual
effort and is error-prone. This is because of the network-
wide nature of network functions: they need to measure
the current network state and carry out richer computation
based on the measured network state. Hence, programmers are
forced to manually manage the complex cooperation between
the switches. Specifically, programmers usually decompose
network function into multiple functionalities first, then de-
sign ways in which these functionalities interact with each
other, and finally implement these functionalities on distributed
switches. These steps often involve error-prone manual func-
tion decomposition and network-device configurations.

Software-Defined Networking (SDN) [14] could easily
solve the problem as it enables programmers to specify
network behaviors through centralized policies at a logically
centralized controller. In particular, OpenFlow [15] offers a
simple programming model, where switches are abstracted
as match-action tables and controllers are responsible for
the management of match-action tables. This model enables
programmers to write a simple, centralized network function
with a global view of the network state without involving the
collection of distributed switches. In order to gain OpenFlow’s
full benefits, a number of domain-specific languages (DSL)
have been proposed to further simplify programming of Open-
Flow applications [16]-[22].

However, applying this approach to datacenter networks
would result in limited scalability [3], [23]. This is because
that a controller needs to frequently compute the bandwidth
allocation and reconfigure the switches to match the current
demand. Even the simple task of detecting elephant flows
requires controller’s reaction to flow arrivals and response to
demand changes. The reaction and response involve frequent
rule installations and network-wide statistics collections, lead-
ing to significant overhead on both the control- and data-plane.

A promising approach to avoid these problems is to handle
the vast majority of packet at the data plane while leaving
only a few packets to be handled by the controller [16], [23]-
[29]. In particular, emerging data-plane languages [26]-[29]
begin to feature advanced per-packet stateful processing at
data plane, i.e.,, programs that create and modify the states
in the switches as part of packet processing. They help to
program the stateful algorithms at a fine-grained, per-packet
level. However, while they simplify the specification of the
stateful packet-processing applications, building sophisticated
network functions is still challenging in practice. The difficulty
stems from the semantic mismatch between the characteristics
of network functions and the offered programming model.

On one hand, network functions care about operations that
refer to flow information, query path conditions, and carry out
richer computations. On the other hand, existing languages
force programmers to explicitly specify packet processing
patterns involving per-packet actions and states maintenance.
Consequently, programmers are required to manually describe
the operations and their functionalities in terms of packet-
processing primitives executed on distributed stateful data
planes, while guaranteeing that the behaviors of the inter-
actions between the packets and the states are compliant to
network functions.

Our goal is to remove the above mismatch by introducing
a new programming model and language system, so to further
simplify the network function programming. Our work has the
following two benefits:

o Programmability: It provides an intuitive programming
language for expressing network functions while facili-
tating easy translation to an efficient implementation on
the data plane.

o Performance: It provides performance guarantees under
network dynamics. The implementation is robust to net-
work dynamics such as a sudden spike in traffic demand
and reacts quickly to environment changes such as link
failures.

To meet the requirement on programmability, we leverage
the observation that many network functions can be built upon
three common operations in the data plane [30]. First, they
rely on flow information to decide when to move a flow
away (i.e., semantic operation, called semantics). Second, they
require path conditions to determine which path to follow
(i.e., conditional operation, called condition). Finally, they
perform path computations over flows (i.e., computational
operation, called computation). Thus, the key idea behind our
programming language is to allow the expression of network
function in terms of path computations over traffic semantics
and path conditions.

For the desired level of performance, we leverage the
observation that today’s stateful programmable switches can
support these operations (i.e., semantics, condition, and com-
putation) to run on the data plane [31]. Thus, another key idea
behind our design is to compile the programs to low-level
stateful packet processing applications, and execute compiled
programs efficiently on distributed programmable switches.

To this end, we propose Easy Path Programming (EP2),
a framework that allows developers to program and execute
network functions on the distributed stateful packet-processing
data planes. EP2 provides a convenient programming model
targeted specifically at network functions that build upon
semantics, condition, and computation. It consists of the
EP2 language for specifying network functions, and the EP2
runtime system for executing compiled programs efficiently on
the stateful data planes.

o EP2 Programming Model: EP2 incorporates the oper-
ations underlying many network functions in the pro-
gramming model, including semantics, condition, and
computation. This makes it intuitive to represent a net-
work function as a collection of interconnected opera-

tions, where the directed edges among those operations
specifying the algorithmic logic of the network function.
As aresult, programming network functions becomes cor-
respondingly simpler, namely, specifying the dependency
between well-defined operations.

o EP2 Language: For the programming model, EP2 pro-
vides a novel high-level language. The language enables
a programmer to express network functions according
to the program model. It allows the programmers to
describe when to handle a flow, and how to choose
a path from a set of available paths for a specified
flow. The programmers can focus on what is computed
without worrying about the low-level details on how the
computation is carried out.

o EP2 Runtime System: The EP2 runtime system is the
complement of the EP2 language. It delegates the compo-
nents of a network function to the stateful programmable
switches. To guarantee the correctness of execution on
the data plane, the runtime system handles the details
on the decomposition of network function, placement of
functionalities, and cooperation of distributed switches.
As a result, the computation of flow paths and the
response to network changes are executed directly in the
data plane. By implementing these functionalities in the
data plane, not only the overhead involving controller is
reduced, but also the performance of network functions
relying on these functionalities is improved.

Thus, EP2 requires no complex network function decom-
position, nor error-prone network device configurations nor
management of distributed switches from the programmers.
It decouples the low-level details from the programming
language while enabling programmers to directly capture the
algorithmic part of the network function.

We have built a prototype implementation by using Antlr
[32]. Given an EP2 program as input, our tool automati-
cally generates a set of Domino [28] programs. Through
case studies, we evaluate how well EP2 can be used to
express network functions and also its performance in terms
of implementation overhead. The results show that EP2 incurs
reasonable overhead with negligible impact on performance.
And the results are consistent with those reported in the papers
where the same examples were studied and evaluated.

To summarize, this paper makes the following contributions:

o We highlight that a large fraction of network functions
are rooted at three key operations: referring to traffic
semantics, querying path conditions, and carrying out
richer computations.

o We present a new programming abstraction based on the
key operations and interactions between the operations.
Our abstraction provides intuitive, yet critical features to
describe network functions which are currently absent in
the existing programming models.

o We present the design, implementation and evaluation of
EP2, a framework that maintains the simplicity of cen-
tralized programmability and achieves the performance
benefits of stateful data planes.

o We show that EP2 can achieve comparable performance

while reducing the programming effort.

The rest of the paper is organized as follows. Section II
introduces the background and motivation of this work. An
example is given as a problem statement. Section III gives
an overview of EP2 architecture. Section IV describes EP2
programming model. Sections V and VI introduce the details
of the EP2 language and the runtime system, respectively. We
then present evaluations in Section VII, discuss related work
in Section VIII, and conclude in Section IX.

II. BACKGROUND AND MOTIVATION

SDN Programming. SDN [14] decouples network appli-
cations from the underlying devices and provides an ap-
propriate abstraction for expressing application logic. As a
result, control functionalities are centralized logically in the
SDN controllers, and network devices are abstracted out as a
simple packet-processing device that can be programmed via
an open interface (e.g., OpenFlow [15], P4 [26], etc). This
design enables the expression of network functions with an
appropriate abstraction and using packet-processing primitives.

Specifically, OpenFlow [15] serves as an abstraction for
describing the forwarding behavior desired by the network
application. Inside an OpenFlow switch, packets are handled
through a sequence of flow tables. Flow table entries consist
of matching rules used to match incoming packets and a set
of actions to be applied upon a match. Upon a new packet
arrival, packet header fields are extracted and matched against
the matching fields. If a matching entry is found, the entry’s ac-
tions are performed. Thus, an OpenFlow program is expressed
in terms of forwarding rules. This makes building sophisticated
applications a complex task in practice. Programmers must
manually handle the low-level details such as the priority or-
dering of rules, network-wide traffic statistics, and composition
of multiple programs. Hence, a number of domain-specific
languages (DSL) have been proposed to address this challenge
[16]-[22]. Rather than explicitly handling the complex low-
level forwarding rules, programmers can use a DSL that has a
compiler responsible for translating the program to OpenFlow.

However, adaptively changing the resource allocation to
meet the network traffic demand can become a major bot-
tleneck for a centralized controller [3], [23]. This challenge
stems from the fact that packets in an OpenFlow network
may be processed by the centralized controller. Given the high
frequencies at which demands change and flows arrive [3],
[10]-[13], even the simple task of detecting elephant flows can
become a major bottleneck for a central controller managing
thousands of switches [9]. Hence, a number of schemes have
been proposed to process packets in the data plane [16], [23]-
[29]. Specifically, they prefer to handle the vast majority of
packets at the data plane while leaving only a few packets to
be handled by the controller.

In particular, emerging data-plane languages [26]-[29] be-
gin to feature advanced per-packet stateful processing at the
data plane. They help to program the stateful process algo-
rithms at a fine-grained, per-packet level. Inside a stateful
switch’s pipeline, programmers should specify parsers that
pass packets through the pipeline, as well as ways to create,

access, and modify states from various stages in the pipeline.
Specifically, a P4 program can operate on per-packet states
that travel with the packet in the pipeline, and operate on
persistent states that are accessible from any stage in the
pipeline. This design enables the program to make packet
forwarding decisions based on the states, and thus supports
the network functionalities that create and modify states as
part of packet processing procedure.

Difficulties. Although languages like Domino [28] make it
simple to implement stateful packet-processing programs at
the data plane, building sophisticated network functions that
advocate per-packet stateful processing in the data plane is still
challenging in practice. Specifically, the programmers must
tackle with several difficulties:

1) Programmers must manually map network functions
into the underlying programming model using packet-
processing primitives;

2) Programmers have to decompose the high-level poli-
cies used in network functions into distributed packet-
processing programs installed on each switch;

3) Programmers are required to carefully design and pro-
gram such that the results from the interactions of
packets and states are compliant to network functions,
especially in the presence of network dynamics.

These difficulties stem from the semantic mismatch be-
tween the requirements of network functions and the offered
programming models. Most of the network functions involve
computation over traffic semantics and network states, but
the existing models represent only the packet-processing be-
haviors. As a result, programmers must carefully design and
program with existing programming models.

A Motivation Example. To highlight the challenges of
building sophisticated network functions using an existing
language, we consider the elephant rerouting application, i.e.,
forwarding elephant flows to paths with minimal load. This
function takes the form of a control loop that estimates the
current traffic demand, measures the total number of bytes of
outgoing path for each packet, and selects the minimal loaded
path for each elephant flow. To implement this function, a
programmer may build packet processing programs as shown
in Figure 1.

To detect the elephant flow, a packet processing program
may take the form of elephant as shown in snippet @. It is
invoked at the incoming of packets (snippet @). The elephant
function takes packet p as input and maintains the demand of
flows in flow_size variable. To get information about the flow
size, the program directly expresses a query on packet size
as p.byte. A programmer then has to maintain a state on flow
size on the switch manually, using packet as an index to access
and modify the state. Specifically, the programmer explicitly
associates the packet p with the flow demand flow_size; the
linkage is accomplished in the elephant function body by using
a numeric offset p.id in the data object flow_size. Given the
flow demand, one can detect an elephant flow by checking
(flow_size[p.id] > threshold).

To monitor the total number of bytes of each packet on the
outgoing path, the programmer could write a program counting

int flow_size[NF] = {0};
int is_elephant[NF] = {0};

void forwarding(struct Packet p) {
p.id = hash(p.src, p.dst) % NF; °

p.next = minimal_path([p.id]; } #

void elephant(struct Packet p) { if (is_elephant[p.id]) {
p.id = hash(p.src, p.dst) % NF;
flow_size[p.id] += p.byte; else {
if (flow_size[p.id] p.next = hash(p.src, p.dst) % NP;
> elephant_threshold) i3
is_elephant[p.id] = 1; *

|

int minimal_load[NF] = {0}; o
int minimal_path[NF] = {0};
void monitor_egress(struct Packet p) {

int counter_ingress[NP] = {0}; 9
void monitor_ingress(struct Packet p) {
counter_ingress[p.next] += p.byte;
p-path = p.next;
p.count = counter_ingress[p.next];

struct Packet {
int src, dst, id, next;

int path, count;
g o

int counter_middIe[NP] = {0}; 9
void monitor_middle(struct Packet p) {
counter_middle[p.next] += p.byte;
if (counter_middle[p.next] > p.count)
p.count = counter_middle[p.next]; s

3)

p.id = hash(p.src, p.dst) % NF;

if (p.count < minimal_load[p.id]) {
minimal_load[p.id] = p.count;
minimal_path[p.id] = p.path;

Ingress Switch

Intermediate Switch Egress Switch

Fig. 1: Network application of “forwarding elephant flows to paths with minimal load” implemented using existing language
Domino [28]. These programs would be compiled into low-level microcode that can run on programmable switches.

the bytes associated with each path to collect the necessary
statistics. Implementing this functionality at the centralized
controller would be easy, since the centralized controller takes
responsibility for the collection of flow statistics available
at the switches. However, this may slow down the packet
processing since this functionality may be invoked on every
packet, leading to serious overhead between the controller
and the switches [1], [3]. Ideally, the programmer would
like to install this functionality on every switches to collect
the necessary statistics. However, performing this installation
is non-trivial: the programmer needs to identify the ingress
switch, the intermediate switch, and the egress switch; and to
assign different functionalities to different switches according
to the switch’s location(@®, @, and ®). Then, when a packet
traversing the network, these switches will process the packet
accordingly to get the total number of bytes (i.e., p.counter)
on the outgoing path (i.e., p.path) for this packet.

The elephant function determines when and how to change
the route to match the demand based on the current traffic flow
and the total number of bytes on the outgoing path (snippet
®). Function forwarding chooses a path with the minimal total
number of bytes using the minimal_path for each elephant
flow. Here, the programmer handles the complexity of the
interactions between the ingress switch and the egress switch
to transfer the value of minimal_path from ® to ©.

In summary, programmers must manually map network
functions to the underlying programming model using packet-
processing primitives. This makes programs unnecessarily
complicated. Hence, we are motivated to build a new ab-
straction that provides a simplified programming model so to
relieve programmers from tasks such as maintaining global
states, decomposing network function into distributed func-
tionalities, and selecting path with a specific strategy. In the
following sections, we will use the same example to show the
benefits of our work.

III. EP2 FRAMEWORK OVERVIEW

Our goal is to ease the work of programing network
function, and to reduce the overhead at controller (so to

improve the overall network performance) when running the
programs. To achieve this goal, we have developed EP2
framework (see Figure 2), a framework that decouples the low-
level implementation from the programming logic via a new
programming model and a new programming language.

EP2 provides a domain-specific language for programming
network functions. It advocates path computation over traffic
semantics and path condition. The EP2 language achieves
a higher level abstraction as a programming model, which
allows the programmers to focus on the control logic of
their network functions and ignore the low-level details. The
intuition behind this programming model is to capture the
actual structure of network function instead of the underlying
switch packet-processing behaviors. Referring to the elephant
rerouting example discussed in previous section, we see that
in order to obtain the desired behaviors of a network function,
the programmers have to manually map the network function
into underlying packet-level programming model, in a switch-
by-switch manner. This makes it hard to implement network
function that is guaranteed to execute on the data plane
correctly. The EP2 programming model, called Flow-Path-
Graph (FPG) model, provides the programmers an opportunity
to specify their network functions with an elevated abstraction.

In the EP2 language, the programmers describe a net-
work function by defining its control logic, called Flow-Path-
Processing (FPP) (see §V), in terms of predicate and prim-
itive. Predicate enables the description of when to handle a
flow by mixing flow semantics with path conditions. Primitive
simplifies the expression of how to choose a path for a specific
flow by packing path computation. The FPP can then be
expressed by simply associating predicates with primitives.

In addition, EP2 provides a runtime system for executing
the network functions in the stateful data planes. The low-
level details involving the implementation of the functions
defined by the predicates and primitives are handled by the
runtime system. EP2 runtime system would map the high-level
programs into the underlying stateful packet-processing appli-
cations. Thus, the EP2 runtime system removes programmers’
burden of managing a collection of distributed switches.

o Network Function EP2 Program FPG Representation
50
;% Load Balancing void FPP(struct Flow f) { C) C)
§ Flow Scheduling o EP2 Language if (Predicate) ° EP2 Compiler y i
I Congestion Control - PP
& 008) Primitive Il IF-->C D)
FPG Partition . .
g Operation Implementation
2 Manager
ES
1 Tomum]] | O
Q
= E [1
‘g Semantics)! Condition |
EP2 .
Framework

‘ Domino Program

Domino Compiler

¢ Configuration

Stateful Switch ---- Stateful Switch

¢ Northbound API

SDN Control Plane
t Southbound API

Stateful Switch

Data Plane

Fig. 2: The EP2 architecture.

Figure 2 gives a more detailed overview of how the
programmers use the EP2 framework to implement their
network functions. EP2 framework has multiple components.
We develop efficient algorithms for these components. The
first component EP2 language (@) involves the expression
of network function; which is then compiled into FPG rep-
resentation by the EP2 compiler (). Furthermore, the man-
ager (®) component enables an efficient implementation of
FPG operations on the programmable data planes. Finally,
the scheduler (®) makes decisions for the FPG operation
placement and interconnection among multiple switches. The
EP2 outputs are in the form of the data plane programing
language Domino. The Domino compiler will configure the
switches to run the needed packet processing logic and the
interactions between the switches. The states are measured and
exchanged between the switches according to the program.
Note that when routing decisions can be made without the
need for flow state information, they will be based on the
rules imposed by the controller, as illustrated in the figure,
which are the same as in the traditional SDN.

IV. EP2 PROGRAMMING MODEL

Ideally, the programming model would allow programmers
to focus on the logic of network functions while removing
their burden of managing the flow details from the distributed
switches. Hence, the programming model should capture the
actual structure of network function instead of underlying
switch packet-processing behaviors. Given such a program-
ming model, the programmers would not need to translate a
network function to the stateful per-packet processing pro-
grams. In other words, the question drives this work is:
Can we develop a programming model that spells out the

actual requirements of network functions and allows intuitive
expression of network functions? This paper takes the first step
towards addressing this question in the context of network
functions that aim to reduce the average flow completion time
(FCT) for short flows and to improve the throughput for long
flows in the datacenter networks. Two widely studied functions
are load balancing (being studied in ECMP [2], [33], Hedera
[1] and CONGA [3]) and flow scheduling (being studied in
PIAS [4], D3 [6] and PDQ [7]). We use them as examples
to help introducing EP2. More general applicability of EP2 is
discussed at the end of this section.

A. FPG Model

Rather than providing per-packet abstraction to the program-
mers, we introduce the FPG model as an intuitive high-level
programming model. The Flow Path Graph model consists of
operations that define the components of network functions
and the relationships between components that represent the
control and data dependency of network functions. Each
operation can manipulate the values of network state including
flow semantics and path conditions. Flow semantics refer to
a set of packets to which a network functionality is applied
to. Network states are then handled by the operations which
compute a path for each flow entering the network. There are,
in most cases, three specially designated operations including
semantics, condition, and computation:

o semantics: predicating on flow states, through which
programmers specify when to run path computation and
assignment;

e condition: measuring path states, through which program-
mers determine which path to follow;

o computation: performing functionalities over flows at the
data plane, including network path computation (through
which programmers specify how to choose a path from a
set of available paths) and flow path assignment (through
which programmers specify the path a flow should go to).

Both semantics and condition operations are particularly
important since many network functions are flow- and load-
aware. The computation operation is particularly important
for datacenter network since many network functions would
provide better performance when handling traffic over small
time scales. This is due to the important feature of dat-
acenter network, ie., datacenter traffic is very bursty and
unpredictable. Operating at small timescales makes network
functions more adapt to traffic dynamics [3].

Given these operations, it is straightforward to capture the
dependency graph that would specify the FPG model. The
dependency graph links these operations based on the control
logic of network function. Our dependency graph has two
types of links: data-flow links and control-flow. Data-flow links
capture the resource dependency that the parent operation must
be available before the child operation can occur, and control-
flow links capture the operation dependency that the parent
operation must be done before the child.

B. Case Study

Network functions such as load balancing and flow schedul-
ing are studied in recent papers. They exhibit high-level
behaviors in terms of traffic semantics, path condition, and
path computation. Here, we use these network functions to
illustrate that FPG provides critical features to describe them.

Load Balancing. Load balancing aims to distribute traffic over
network paths to reduce the level of congestion. Work form
ECMP [33], Hedera [1], and the recently proposed CONGA
[3] deal with the function differently. We show how each
scheme would be expressed in FPG.

ECMP [33] evenly distributes the traffic over multiple equal
cost paths. It can be easily decomposed into the following FPG
components:

o semantics: relying on selected fields of packet headers to

classify packets into flows;

« condition: requiring a set of available paths for each flow;

o computation: performing hash functionality on the data

plane to forward flows.

Hedera [1] measures the bandwidth consumed by each
flow and moves elephant flows to an alternate path with
sufficient capacity for that flow. While Hedera is implemented
with a centralized scheduler, we focus on the higher-order
functionalities associated with Hedera: estimating demand for
each flow, maintaining available bandwidth for each path, and
selecting path for each flow. Thus, it can be decomposed into
the following components:

o semantics: relying information on flow demand to detect

elephant flows;

o condition: requiring maintenance of available bandwidth

for each path;

e computation: performing elephant flow movements on the

data plane.

CONGA [3] performs congestion-aware load balancing.
It takes the form of a control loop that splits flows into
flowlets, estimates real-time path congestion, and allocates
flowlet path least loaded. It can be decomposed into the
following components:

o semantics: relying on the idle interval information to
detect flowlets;

o condition: requiring to measure the load for each path;

e computation: performing flowlet forwarding based on
measured path load information on the data plane.

Flow Scheduling. Flow scheduling aims to optimize appli-
cation performance in terms of reduced FCT by carefully
scheduling flows across the network. For example, PIAS [4]
minimizes FCT by simulating the shortest flow first scheduling
strategy. With PIAS, flows start in the highest priority but are
demoted to lower priorities as their sizes increase. PIAS’s flow
scheduling can be expressed via the following higher-order
functionalities: estimating demand for each flow, maintaining
available bandwidth for each path, and selecting path for
each flow. Thus, PIAS can be decomposed into the following
components:

o semantics: relying on flow sizes to assign priorities;

e condition: requiring to measure the load for each path;

o computation: performing path selection for high priority
flows at the data plane.

C. Discussion

The FPG model provides the following features to simplify
the task of sophisticated network functions programming:

1) FPG models the high-level behavior of a network func-
tion that captures the three common operations of exist-
ing network functions.

2) FPG enables a programmer to focus on the operations
that are necessaries for network functions without wor-
rying about the low-level details behind each operation.
The programmer does not think about how to decompose
this function into distributed functionalities, where to
place those functionalities, and how to connect those
functionalities to achieve the desired behavior.

3) FPG serves as an intermediate representation that en-
ables an easy translation from an EP2 program to
an efficient implementation on the programmable data
planes (§VI).

These features show that FPG is intuitive since it is derived
from the common components of existing network functions.
Although only load balance and flow scheduling are explicitly
analyzed in this paper, FPG is general and applicable to other
network functions. In §VII-A, an analysis of most reported net-
work functions is given. The result shows that these functions
can be expressed or approximated with matching performance
using the proposed FPG operations of semantics, condition,
and computation. For examples, congestion control and QoS
can be approximated. While the related work usually apply to
one function, FPG can support more network functions. We
expect FPG model to describe new network functions proposed
in the future.

Predicate d:= c|d bop d
Primitive p := f.next =5 _I(f.path)
Selector s := MIN|MAX|RAND
Path State | := LOAD|ABW |MULTIPLEX
Flow Field h::=fi|fp
Flow Path fp = next|path

Flow Info fi:= size|interval|priority

Condition ¢ := f.fi bop literals|f.ﬁ7.l bop literals
Statement e := p‘if(d){e} else{e}|e;e

Function k:=void FPP(struct Flow f){e}

Fig. 3: EP2 syntax.

V. EP2 LANGUAGE DESIGN

EP2 language provides language support to express the
network functions in terms of the FPG programming model.
The syntax of EP2 language is similar to C language, however,
its semantics are tailored to programming with FPG program-
ming model. EP2 language offers a number of features that
allow programmers to use high-level primitives representing
high-level behaviors when expressing processing logic. In this
section, we describe the main features of EP2 language in
detail.

A. EP2 Language Syntax

The EP2 language is mainly to express the processing
logic of a network function (note the type annotations are
elided for simplicity). The EP2 language is comprised of a
collection of constructs, including predicate, primitive, and
FPP functions. All of them allow programmers to specify the
intended behaviors of their network functions at a high-level
of abstraction. The predicates are used to query flow semantics
and look up path conditions. The primitives are used to specify
where to forward incoming flows. The FPP functions are used
to express the control logic of a network function. Together,
these abstractions hide the details of the entire network, while
enabling programmers to retain the control over when and how
to assign paths for interested flows. The core syntax of EP2
language is shown in Figure 3 with explanations below.

Flow f. Before writing an EP2 program, we use a concrete
representation of traffic patterns and network states. Generally,
a flow f is a record of fields {ry, 73, -, 7}, where field r;
represents properties such as size, current forwarding path,
the set of available paths, etc. The values of fields can be
accessed via the notation fr;, and updated via the notation
f.ri = v. Specifically, EP2 allows programmers to specify
properties on either traffic patterns via f. fi or forwarding paths
via f fp. Furthermore, programmers can access the network
states associating with the forwarding paths f fp via f fp.l,
such as past load, available bandwidth, etc.

Predicate. EP2 supports a predicate language for classifying
flows. Formally, the predicate denotes a filter, comprising a

network state, a operator, and a guard, allowing programmers
to select sets of flows that are of interest according to forward-
ing policies. There are two types of predicates: the predicates
on flow information evaluating the guard against flow state,
and the predicates on path information evaluating the guard
against path condition. A flow information predicate is in the
form of f.fi bop literals, denoting the set of flows whose flow
state f.fi is bop to literals. EP2 provides flow information
predicates for a number of flow properties including size,
interval, and priority. For instance, the predicate (f.size >
threshold) has two arguments: the demand (f.size) of the flow
f, and a guard threshold. Here, the predicate tests whether
the size field of the flow f being processed is greater than
the guard value threshold. In other words, it tests whether the
flow has sent the number of threshold packets out in the past.
If it has, the predicate is satisfied; if not, it is unsatisfied. A
path information predicate is in the form f.fp.l bop literals,
denoting the set of flows that is being forwarded through the
network using path f.fp whose state f.fp.l is bop to literals.
EP2 provides path information predicates for a number of
path properties including load, abw, and multiplex. For
instance, the predicate fnext.abw > 10 matches the available
bandwidth of path fnext taken by flow f. Predicates can also be
combined using logical operators including conjunction (&&),
disjunction (||), and negation(!). More complex predicates are
built up from simpler predicates using these logical operators.

Primitive. EP2 allows programmers to specify the desired
forwarding path using primitives. Formally, a primitive in the
form of f.next = s_l(f.path) says that the flow f should
be forwarded to the path f.next whose state [satisfies the
constraint specified in s in the context of f.path. The term
f-next identifies the fact that this is a primitive that assigns a
new path to the flow f. The term s_I (f.path) specifies how
the flow f should be forwarded. It contains two components.
The first component is a filter, written as [, extracting the
path information from the set of available paths given by
the argument f.path. The filter | feeds the extracted path
information to the second component. The second component
is a selector, written as s, which specifies how to select the
path from the set of available paths given by the argument
f.path. The path chosen by the selector s should match
the path information specified by the filter /. Considering
the example snippet code MIN_LOAD(f.path), the composed
primitive MIN_LOAD would first extract the load on each path,
take the load as the input to the MIN selector to find the path
with minimal load.

Function FPP. The algorithmic part of an EP2 program is
expressed in the FPP function that takes a flow f as an input
and is defined by the statements in e. Each statement specifies
the handling of the incoming flow f. The struct Flow f is
essential for modeling traffic patterns and network states, such
as the past load on a particular path or packets sent. While
the statement e is essential for modeling flow forwarding
behaviors that depend upon the traffic patterns and the network
states. A statement in the form of if (d) {p} denotes that the
primitive p is free to specify the forwarding path that should
be applied to match flow f as long as the constraint expressed

Network Application Operation EP2 Program
Forward _ void FPP(struct Flow f) {
elephant flows -- _St—zmantlcg - -4 - - if(f.size > elephant_threshold)
10 paths with f.next = MIN_LOAD(f path);
. Computation |} A
minimal ~ |----mmmsssssedeeeennnnn-
load 0

Fig. 4: EP2 program for elephant rerouting application.

by the predicate d is satisfied. Thus, the FPP function runs
as this: taking a single flow f as the input and assigning
the forwarding path through the network using the primitive
p when the incoming flow f satisfies the predicate d. Note
that the burden of managing all the details needed to ensure
that each flow is forwarded out the correct path is left to the
runtime system.

An EP2 Example. We illustrate how program in EP2 language
using the same elephant rerouting example, the one presented
in Figure 1 as our motivation. The corresponding EP2 program
is shown in Figure 4 and elaborated below.

The data type used in elephant function (snippet @ in
Figure 1), i.e., the Packet, is defined at a very low level of
abstraction. In order to maintain the demand of a specified
flow, the program first hashes the packets into flows, and then
accesses and modifies the corresponding data array flow_size.
The program shows the burden of programming in maintaining
global arrays and assigning offsets. In contrast to this packet-
processing abstraction, with EP2, a conventional data object
Flow is used for flow-processing abstraction. Thus, the pro-
grammer can query the information of a specified flow by
referring to the field of struct Flow, one information per field.
The runtime system is responsible for the implementation of
corresponding routines. In this case, we would be able to pack
the function body of maintaining flow_size into the express
f-size that yields the demand of flow f.

Rather than implementing the monitor function (snippet @,
® and @ in Figure 1) at the centralized controller, which forces
the controller to process far more packets than necessary, we
install the monitor function at the distributed data planes.
Using the previous programming model, the programmer
manually and carefully specifies the functionality executed on
each switch. In addition, the programmer must also specify the
communication patterns between the different functionalities,
i.e., the way they interact with each other, to obtain the desired
behavior. However, using EP2, programmers are provided a set
of declarative query operators to obtain the desired behavior. In
this case, we would be able to query the total number of bytes
of outgoing path for flow f with a simple query expression:
fnext.load.

For the forwarding function (snippet ®) shown in Figure
1, the programmer needs to manually implement the path
selecting functionality minimal_path depending on network
state, which makes the program unnecessarily complicated.
In EP2, there is no need to implement the minimal_path
functionality. Rather, the programmer can choose from a set of
declarative query operators to obtain the desired path. In this

----- > data flow

—> control flow

D semantics

r= —I e
| Icondltlon

[E[’ computation

Fig. 5: FPG representation for elephant rerouting application.

elephant _
threshold

I ‘}f.-.>|| ot ||

case, we would be able to choose a path for flow f compliant
with the min_load function using: MIN_LOAD(f.path), where
f-path represents the set of available paths for f.

Furthermore, to specify the forwarding function using EP2
language, a programmer defines a function FPP to be invoked
on every flow f (Figure 4). This flow f has demand f.size
and should be forwarded to path fmext which is selected
from available paths fpath. The program shown above uses
the predicate (f.size > elephant_threshold) to detect elephant
flows: as soon as the flow size exceeding the threshold we
characterize it as an elephant. The program then selects the
least loaded path with primitive: MIN_LOAD, which takes
fpath as input and returns the least loaded path to fnext.
In this code, the special keyword LOAD matches f.path.load,
while the keyword MIN ranks the set of paths with key LOAD.
Thus, the statement MIN_LOAD says that the flow f should
follow the path with minimal total number of bytes. As such,
by associating predicates f.size > elephant_threshold with
primitive MIN_LOAD, the programmer defines the network
application shown in Figure 4.

B. EP2 Compiler

Given an EP2 program, the compiler translates it into FPG.
The compiler first performs code analysis to determine the
operations required to implement a network application. Any
predicates of the program should be translated into the seman-
tics operations. The compiler then partitions any primitives
of the program into three operations: the arguments of the
primitive are translated into the semantics operations, the
selector part of the primitive is translated into the computation
operation, and the path state part of the primitive is translated
into the condition operation. Finally, the compiler intercon-
nects these operations to build the intermediate representation
of the program, i.e., FPG.

To illustrate the workflow of the compiler, consider the
elephant rerouting example shown in Figure 4. To begin,
the compiler would identify six operations: (f.size > ele-
phant_threshold) predicating flow semantics f.size, MIN com-
puting path over f.path using path condition load, and f.next
updating the path for flow f. The FPG representation can
then be obtained by drawing directed edges between those
operations and related dependencies, as shown in Figure 5,
representing possible logic for flow handoff.

VI. EP2 RUNTIME SYSTEM

EP2 provides high-level programming model that captures
the logic of network functions instead of behaviors of the

physical switches. However, the requirements of handling low-
level details do not just disappear. There is still the need
of mapping the high-level FPG representation to the low-
level packet-processing behavior. Rather than requiring the
programmers to manually interact with switch-level primitives,
the runtime system takes the responsibility of implementing the
low-level details in order to provide an efficient deployment
for high-level FPG model.

EP2 runtime system manages all of the functionalities re-
lated to the network state measurement and the path selection.
It also generates the necessary communication patterns be-
tween these functionalities. Figure 2 shows an overview of the
EP2 runtime system. The runtime system is designed around
the FPG. It is composed of tasks that decompose and place the
FPG to the stateful SDN for execution. It handles operations,
the communication between operations (i.e., manager) and the
assignment of operations to programmable switches and SDN
controllers (i.e., scheduler).

The manager (® in Figure 2) measures the flow semantics
and path conditions to specify when to run path computation
and assignment. For each flow, the manager provides predi-
cates on flow semantics and path conditions to specify when
to run path computation and determines the path from a set
of available paths the flow should go to. The path assigned by
the manager is compliant with the network function that the
programmer defined. Specifically, the manager aims to achieve
the desired behavior specified by the programmer based on the
FPG.

The scheduler (® in Figure 2) determines the appropriate
assignment of the FPG to the controller and the underlying
switches to support high-level network function in a scalable
way. Since we focus on the network function that advocates
stateful packet processing in the network data planes, we do
not involve the controller in handling data packets. Specif-
ically, the scheduler runs on top of the controller to divide
the FPG across the switches with a goal of minimizing the
fragmentation of the FPG. This is achieved by exploiting
locality, i.e., the operations handled locally within a switch. In
this way, a substantial fraction of the operations will be placed
within individual switch which reduces the inter-operation
communications. Hence, the scheduler significantly lowers the
communication overhead among operations.

A. Manager

The manager first measures the network states including
those in semantics and condition belong to the FPG specified
by the programmer. Then, the manager performs network
state aware computation. We briefly describe how the manager
works in terms of semantics, condition, and computation.
Throughout this section, we will use the elephant rerouting
application (Figure 4) as the illustration example.

Measuring Semantics. For the semantics, manager needs to
mark all its traffic and to identify each semantic information
separately. The semantic information is carried with the flow
and is used to determine the operations to apply. In addition,
manager keeps tracking of the historical semantics for nec-
essary, and associates the historical semantics with flows by

using a unique identifier. For example, f.interval measures the
idle interval between two bursts of packets from the same flow
f- The manager would keep tracking the arrival time of the last
packet from flow f, and update the interval time f.interval when
the new packet arrives.

Consider the elephant flow detection part of the elephant
rerouting application. In this case, we assume that the thresh-
old, beyond which a flow is characterized as elephant, can be
determined by analyzing the flow size distribution. For each
flow, manager updates the size of the flow and then test the
flow size on the threshold by using predicate (f.size > ele-
phant_threshold). This predicate triggers a reroute operation
if a flow matches the threshold.

Measuring Condition. The manager uses switch-to-switch
feedback mechanism to measure the path conditions. The
knowledge about path conditions are essentially needed in
order to handle network dynamics. For example, with asym-
metric network topology, a switch is hard to balance traffic
without the knowledge about downstream congestion. The
manager measures path conditions using a CONGA-like con-
dition estimation algorithm, where the egress switch feeds the
path conditions to the ingress switch.

To illustrate the procedure of path condition measurement,
we use the load functionality (see Figure 4) from the elephant
rerouting example. Measuring the level of load requires coordi-
nation among switches to identify the bottleneck for each path.
Thus, per-switch monitor does not satisfy this requirement.
Specifically, in order to measure the load level, the source
switch should attach a load field to the packet header that
contains the current state of load level (e.g., f-next.load). Each
switch then maintains this state for the path f.next. Since this
state is needed for the ingress switch, the egress switch feeds
this state back to the ingress switch. The following steps can
be used to measure the level of load:

1) For each intermediate switch, keeps tracking of the total
number of bytes for each upstream link;
2) For each arrival flow f, updates f.next.load if upstream
link has higher load level than the value in fnext.load,
3) For each egress switch, feedbacks the value in f.next.load
to the source switch with opportunity;
4) For each ingress switch, update the load table for each
path upon receiving feedback from the egress switch.
The manager must maintain states over time because flow
semantics or network conditions change. The main concern
is the overhead incurred by such fine-grained recording. To
reduce the overhead, the manager requires that every flow
must begin with a SYN and terminate with a FIN so that
manager can perform in-network book-keeping.

Performing Computation. The computational functionality
is conceptually a collection of network state operations. The
state of the network is indexed by referring to the programmer
specified fields. Intuitively, a computation functionality takes a
set of paths plus the current state of the network as input, and
determines the path characterized by the properties specified
by the programmer.

To illustrate how the manager handles the computational
operations, consider the example of elephant rerouting again.

To begin, the manager starts by learning the size of a flow. If
the flow’s size is already larger than a predefined threshold,
the manager reads the path conditions to find a path that this
flow should go to. In this case, the code snippet (f.next =
MIN_LOAD (f.path)) in the forwarding function would check
two kind of network states: the set of possible paths f.path and
the load level for each path in fpath (e.g, f.path.load). The
operation MIN_LOAD sorts these paths (i.e., f.path) based on
their load extent and returns the path with minimal load, which
is then assigned to flow f (i.e., f-next). If a flow has been moved
to a new path, the manager updates the path that carries this
flow for total number of bytes automatically. Consequently,
flows can continue to forward along this path without causing
congestion even when other flows arrive.

B. Scheduler

The objective of the scheduler is to maximize the number of
the operations handled locally within switches. It determines
for each FPG the locations of its operations. The placement
is synergistic with the manager, as it satisfies the placement
of the operations assigned by the manager. Specifically, the
scheduler needs to ensure that it places operations in the
network (i.e., ingress/egress switches) specified by the man-
ager (called local operations). For the remaining operations
not assigned by the manager (called residual operations),
the scheduler performs a greedy algorithm that exploits the
locality to minimize the overhead of data transfer as follows:

1) Let GG; be the set of local operations with location [

assigned by the manager.

2) Residual operations become assignable after all its par-

ent is scheduled.

3) The assignable operation would be added to G if it has

the largest connectivity with the scheduled operations in
G.

To illustrate the placement algorithm, consider the example
of elephant rerouting application. First, the scheduler assigns
the set of operations {fsize, fnext} and {load, fpath} to
the ingress switch and egress switch respectively, based on
the feedback from the manager. Then, the scheduler iterates
over remaining operations and assigns them if their parent
dependency are satisfied. We see that (f.size > threshold) does
not depend on other operations, so it can be scheduled imme-
diately. In this case, the scheduler would add the operation
of (f.size > threshold) to the ingress switch, as it depends
on the operation of f.size. For the remaining operation MIN,
the scheduler checks its dependency on (fsize > threshold)
and load, and finds that it has a child node fnext. So, this
operation would be assigned to the ingress switch. Finally, the
scheduler generates the communication pattern between the
ingress and egress switches, as the operation of MIN depends
on the operation of load.

VII. EVALUATION

The central piece of EP2 implementation is the compiler,
which translates the EP2 program into the FPG representation.
We build a prototype implementation for the compiler de-
scribed in section V-B by using Antlr [32]. This tool accepts an

TABLE I: Example network functions. Where ¢ indicates
supported, and * indicates approximated.

Function Scheme - EP2 .
Semantics [Condition [Computation

WCMP [2] ['4 v v
E;zicing Hedera [1] v % v
CONGA [3] [4 4 4
Flow PIAS [4] v X X
scheduling pFabric [5] 4 X X
Congestion D3 [6] v x x*
control PDQ [7] 4 * *
QoS QJUMP [8] v * *

EP2 program and produces the corresponding FPG. The other
piece of EP2 implementation is the runtime system, which
sits between the FPG representation and the stateful SDN. We
implement the runtime system described in section VI on top
of Domino. The Domino language provides features such as
running at line rate, expressing algorithms with an imperative
language, and manipulating states at the computation.

In this section, we evaluate the expressiveness of EP2
language and the performance of network functions achieved
by their implementations on top of EP2 runtime system. We
answer three key questions:

1) Does EP2 allow programmers to easily write real-world

network functions?

2) What is the overhead of EP2 runtime system on the

programmable switches?

3) How efficient are the implementations of network func-

tions generated by EP2?
We address #1 through quantitative analysis and #2-3 through
case studies on real-world network fucntion examples.

A. Expressiveness

We have implemented several network functions (Table I)
that are typically related to routing algorithms. Table I gives
the expressiveness of EP2 language in terms of whether EP2
can support operations of those network functions. The listed
network functions are those studied in related work, which are
cited. EP2 is able to express most of them, while each related
work only covers one network function. For those that EP2 can
not express fully, which are the functions performing packet
scheduling and queue management, EP2 can approximate
them. The approximation can simplify their implementation.

B. Case Study

The case study is to evaluate the runtime system and
the resulting network functions with comparisons to the re-
lated work. Our rational for choosing the candidate existing
work from Table I for comparison is justified in term of
the network function and the related scheme implementing
the selected function. Given the four network functions, we
observed that a large fraction of load balancing schemes are
already available as routing algorithms; translating them to
FPG model is straightforward. In contrast, expressing flow
scheduling function demonstrates high complexity. It requires
a support for flow prioritization at the switches, which may
be unavailable at the path selection component. Specifically,

void pFabric(struct Flow f){
if (f.interval > flowlet){
if (f.priority <= threshold){
f.next = MIN_LOAD(f.path);
P

[N S

Fig. 6: pFabric implementation in EP2.

flow prioritization requires several properties, such as, strict
priority to prioritize one flow over another, and preemption to
allow higher priority flows to preempt lower priority ones if
needed. The main reason accounting for this difficulty is that
flow-based policies schedule flows one at a time. This can
help finish flows faster by reducing the amount of contention
in the network. In addition, these two properties are crucial
in supporting flow prioritization mechanisms in the other
network functions of congestion control and QoS (in PDQ
[7] and QJUMP [8] respectively). Hence, it is sufficient when
using flow scheduling function in our evaluation. Further,
the flow scheduling function in pFabric implementation has
been used in performance comparisons with other network
functions by multiple researchers. It has shown promising
performance in these comparisons. Thus, we also choose to
compare EP2 implementation with pFabric implementation.
With a comparison to pFabric, one is able to estimate the
performance of EP2 with those related work.

Identical implantation of the flow scheduling function in
EP2 as it in pFabric is impossible due to the different levels
of abstraction of the two languages. Guided by pFabric,
which prioritizes small flows over large flows, we consider
forwarding small flows over less loaded paths. By examining
pFabric, we learned that it schedules packets using the Shortest
Remaining Processing Time First policy. Hence, as our case
study, we describe how EP2 can approximate pFabric in
expressing the network function that schedules flows so as
to reduce the FCT.

Figure 6 shows the pFabric function written in EP2 lan-
guage. Note that we omit the maintenance of the threshold
variable used as guard in line 3. This function makes two
decisions to approximate pFabric: which flow to move away
and which path to take. For the former, we assume that the
data center has the knowledge about the distribution of the
flow size. Based on this information, we identify a set of
thresholds that define the priority for a flow given its current
size. For each flow, the program then searches the set of
thresholds to find the priority corresponding to the flow size.
Then the function performs a priority-based flow scheduling
in which only the highest priority flow should be forwarded
along the least loaded path. This design guarantees that the
highest priority (smallest) flows encounter small buffers and
consequently entail small latencies. This, in turn, helps to
reduce the FCT of large flows, since the contention on the
path taken by large flows would be reduced as we move the
small flows away.

Runtime system overhead and programmability. The EP2
runtime system program of the pFabric function is given
in Figure 8. As shown, it is implemented on top of the
Domino language. The program implemented in Domino has

@ EP2 |
@ pFabric

Stride(16) Random Shuffle

Average FCT

0.4 0.6 0.8 0.9 0.4 0.6 0.8 0.9 0.4 0.6 0.8 0.9
Load

Fig. 7: Implementation efficiency.

TABLE II: Overhead of EP2 runtime system.

Component | Most expressive atom [28] | Delay
Semantics ReadAddWrite (RAW) 316ps
Condition Paired updates (Pairs) 606ps
Computation ReadAddWrite (RAW) 316ps

the details for semantic, condition and computation. For the
programmability, we count the number of lines in the original
EP2 program implementation of pFabric function in Figure 6,
and compare the number with the number of lines in Figure
8. The result shows that EP2 is more concise, using five time
less number of lines in the program.

To evaluate the overhead of the runtime system, we check
whether the Domino implementation allows the programmable
switch to run at line rate following the method used in
previous works [28]. We report the overhead of running the
semantic, condition, and computation functions in terms of
most expressive atom, as shown in Table II. In the table,
RAW indicates the ability to read a packet field, add the value
of the packet field to the state variable, and write back to
the state variable. Pairs extends the ability of RAW to allow
conditional operations based on the value of the state variable.
Essentially, an atom reflects the delay to run the function
over programmable switch and the area overhead incurred in
silicon. Specifically, RAW has a delay of 316ps and an area of
4314m?; Pairs has a delay of 606ps and an area of 5997um?.
All atoms meet timing at 1GHz. The result shows that both
of these functions can run at a 1GHz clock frequency.

Implementation performance. To assess the performance of
our algorithms used in implementing pFabric, we compare the
EP2 implementation with pFabric implementation in NS2 [34].

We use the leaf-spine topology that has 9 leaf switches
connected to 4 spine switches. Each leaf switch has sixteen
10Gbps downlinks to the hosts (144 hosts) and four 40Gbps
uplinks to the spines. Our simulation setup is based on the
NS2 implementation from [35]. The workload used in the
experiments is based on the observation that most of the traffic
are generated from a small fraction of the flows. Specifically,
both the flow size and sending rate are generated according
to the distribution modeled after realistic traffic pattern in
the deployed datacenters, as reported in [10]. Similar to the
previous works [3], [7], [36], we study the impact of the
following sending patterns:

o Stride(i): servers in the network are indexed from left to

TABLE III: Comparison of EP2 with pFabric in terms of FCT
for small and intermediate flows with shuffle sending pattern.

[Load] Metric [Flow type | EP2/pFabric |
Short 108%
08 Average FCT Intermediate 100%
: . Short 102%
Tall FCT ermediate | 107%

right; a server with index x sends to the server with index
(x+i) mod N, where N is the total number of servers.

e Random: a server sends to another randomly-selected
server not under the same leaf switch.

o Shuffle: each server in the network sends data to ev-
ery other server in the network, with a constraint that
the source and the destination are under different leaf
switches.

Figure 7 shows the overall average flow completion time
(in seconds) for each sending pattern at different traffic loads.
From the figure, we find that the overall average flow comple-
tion time is similar for both schemes in our experiments. First,
under low network load, pFabric has some advantages over
EP2. Second, EP2 is comparable to pFabric with increasing
load. This is because the throughput is mainly bottlenecked
at the leaf-to-host links at the low load and at the leaf-
to-spines links at the high load. The latter enables EP2 to
optimize average FCT with increased load since EP2 focuses
on scheduling leaf-to-spine links. Further, we breakdown the
FCT statistics for two classes of flows: the small flows
(<10KB) and the intermediate flows (10KB — 1MB). Table
IIT compares the average and the 99th-percentile of FCT for
the two classes when executing EP2 and pFabric programs
with the shuffle sending pattern. As expected, by enabling
prioritization, pFabric reduces the average flow completion
time. EP2, by fairly sharing bandwidth among flows, provides
comparable performance with less variability. In all, it is safe
to say that EP2 can approximate pFabric by prioritizing small
flows over large flows. This is enabled by always selecting the
least loaded paths for small flows.

VIII. RELATED WORK

EP2 relates to existing work on network programming
languages in different ways. Table IV briefly summarizes and
compares these related work against the design goals of the
network programming languages in terms of programmability
and performance.

OpenFlow-Based SDN: Several programming languages
have been proposed to offer a level of abstraction for program-
ming the network. They include Frenetic [16], Pyretic [17],
and Maple [22]. These languages are limited to OpenFlow net-
works: any stateful processing intelligence of network services
is delegated to the centralized controller, leaving the OpenFlow
switches dumb. The centralized controller is responsible for
the correctness of the switch behavior. EP2 is similar to
these work in the sense that the FPG programming model
allows programmers to focus on the logic of network functions
while removing their burden of managing the collection of
distributed switches. But, EP2 enables the implementation of

network functions in the data plane by leveraging stateful
platforms, which is not the case for these languages. Although
Frenetic also aims to handle as much packets as possible at
the data plane to reduce the amount of packets handled by the
controller, it does not allow programmers to specify switch
functionalities as EP2 does. Readers interested in a compre-
hensive survey about programming languages in OpenFlow-
based SDN may consult the paper by He et al. [37].

Stateful SDN: There are some new languages that of-
fload the programs requiring stateful traffic processing to the
switches. They include OpenState [38], FAST [39], P4 [26],
and Domino [28]. The P4 language represents a switch as
an abstract forwarding model which allows the expression of
how packets should be processed by the network switches.
Programmers can program a set of header fields to be matched
and a set of actions to be applied. Programs written in the
P4 language can be mapped to several kinds of devices
(e.g., NPU, FPGA, and Open vSwitch [40]). The Domino
language proposes the packet transaction abstraction to rep-
resent sequential packet processing. It allows the program-
mers to write stateful data-plane packet processing programs
without worrying about other concurrent packets. Therefore,
the programmers only concern about the operations on one
single packet. Unfortunately, while these mechanisms make
it possible to implement traffic processing tasks on the data
plane, both P4 and Domino do not make it easy. They both
target at a single device, while lacking the abstraction to
help programmers managing the complexity of programming
a network of switches. The main difference between EP2 and
these languages is that EP2 seeks to address the issue of how
to program a collection of interconnected switches. On the
other hand, EP2 benefits from these languages in that they
can be used as an intermediate language for EP2 programs.

One-Big-Switch: The closest related work to EP2 is SNAP
[27], which also offers a new language and an abstraction
model to reduce the complexity of network programming. It
does so by representing the whole network as one big switch.
With SNAP, programmers can easily write programs involving
stateful operations at the data plane, without knowing how or
where to store the state information. Similar to SNAP, EP2
provides the programmer a centralized view of network states
and allows the programmer to manage network states globally.
While the high-level architecture is similar, EP2 emphasizes
on the details that are significant to the network functions
handling the datacenter traffic, e.g., the load balancing, which
is critical to avoid network congestion at short timescales.
Moreover, EP2 also emphasizes on the functional properties
of when and how to choose a path for a specified flow while
SNAP does not.

IX. CONCLUSION

This paper has presented EP2 framework with the goal to
ease the program developing process for the network func-
tions. Specifically, EP2 consists of a language, a compiler and
a runtime system for implementing network-wide applications
using a distributed set of programmable devices. The details
relating to programming with EP2 high-level language and

Proposal Programming Model Programmability

Performance

Frenetic [16]
NetKat [20]
Maple [22]

Simple:
OpenFlow-based SDN

- Domain specific language
- Global view of network state

Low: Indirect control (stateful
packet processing in the
controller)

P4 [26]
Domino [28]
OpenState [38]

Complex:
Stateful SDN

- Need for cooperation
- Per-device programming

High: Direct control (stateful
packet processing in the switches)

FAST [39]
SNAP [27] One-Big-Switch Simple: Domain specific language
EP2 Flow-Path-Graph Simple: High: Direct control & Global network

- Network function driven

state aware packet processing

TABLE IV: Comparison of related work in terms of programming model, programmability, and performance.

supporting from its own runtime system are given using ex-
amples with comparisons to related work. Moreover, the paper
has shown that EP2 can express or approximate the various
network functions studied in the literature with matching
performance. This shows that EP2 framework simplifies the
example programing cases, and is general and applicable to
other network functions. In our future work, more network
functions will be instantiated.

ACKNOWLEDGMENT

This work is supported by the National Key Research
and Development Program of China (2016YFB0800102,
2016YFB0800201), the Key Research and Development Pro-
gram of Zhejiang Province (2017C01064, 2017C01055), the
National Natural Science Foundation of China (61379118) and
the Fundamental Research Funds for the Central Universities.
Xiaoyan Hong’s work is supported partly by National Science
Foundation award #1541462.

REFERENCES

[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic Flow Scheduling for Data Center Networks,” in 7th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 10), (Berkeley, CA, USA), pp. 19-19, USENIX Association,
2010.

[2] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, and
A. Vahdat, “WCMP: Weighted Cost Multipathing for Improved Fairness
in Data Centers,” in Proceedings of the Ninth European Conference on
Computer Systems, EuroSys "14, (New York, NY, USA), pp. 5:1-5:14,
ACM, 2014.

[3] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,
“CONGA: Distributed Congestion-aware Load Balancing for Datacen-
ters,” in Proceedings of the 2014 ACM Conference on SIGCOMM,
SIGCOMM ’14, (New York, NY, USA), pp. 503-514, ACM, 2014.

[4] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Information-
Agnostic Flow Scheduling for Commodity Data Centers,” in [2th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15), (Oakland, CA), pp. 455-468, USENIX Association, 2015.

[5] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pFabric: Minimal Near-optimal Datacenter Transport,”
in Proceedings of the 2013 ACM Conference on SIGCOMM, SIGCOMM
13, (New York, NY, USA), pp. 435446, ACM, 2013.

[6] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better Never
Than Late: Meeting Deadlines in Datacenter Networks,” in Proceedings
of the 2011 ACM Conference on SIGCOMM, SIGCOMM ’11, (New
York, NY, USA), pp. 50-61, ACM, 2011.

[7] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing Flows Quickly
with Preemptive Scheduling,” SIGCOMM Comput. Commun. Rev.,
vol. 42, pp. 127-138, Aug. 2012.

[8] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. M. Watson, A. W.
Moore, S. Hand, and J. Crowcroft, “Queues Don’t Matter When You
Can JUMP Them!,” in 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15), (Oakland, CA), pp. 1-14,
USENIX Association, 2015.

int first_time [NUM_FLOWS] = {0};

void semantic(struct Packet pkt) {
pkt.id = hash2(pkt.sport, pkt.dport) % NUM_FLOWS;
pkt.interval = pkt.arrival — first_time [pkt.id];
pkt.priority = 0;

if (pkt.interval > THRESHOLD_1) pkt. priority = 1;
if (pkt.interval > THRESHOLD_2) pkt.priority = 2;
if (pkt.interval > THRESHOLD_ 3) pkt.priority = 3;
if (pkt.interval > THRESHOLD_ 4) pkt.priority = 4;
if (pkt.interval > THRESHOLD_5) pkt.priority = 5;
if (pkt.interval > THRESHOLD_ 6) pkt.priority = 6;
if (pkt.interval > THRESHOLD_7) pkt.priority = 7;

}

int old_path_util [NUM_PATHS] = {100};

int best_path_util [NUM_SRCS] = {100};

int best_path [NUM_SRCS] = {0};
void condition (struct Packet pkt) {
pkt.old_path_id = pkt.old_path > 0 ? pkt.old_path
% NUM_PATHS : O0;
src_id = pkt.old_path > 0 ? (pkt.old_path /
NUM_PATH_PER_SRC) % NUM_SRCS : 0;
old_path_util = old_path_util [pkt.old_path_id]
* ALPHA / 16 + pkt.mark x BETA / 16;
old_path_util [pkt.old_path_id]=pkt.old_path_util;
if (pkt.old_path_util<best_path_util[pkt.src_id]){
best_path_util [pkt.src_id] = pkt.old_path_util;
best_path[pkt.src_id] = pkt.old_path_id;
}else if(pkt.old_path_id==best_path[pkt.src_id]){
best_path_util [pkt.src_id] = pkt.old_path_util;}

pkt.

pkt.

}

void computation(struct Packet pkt) {
if (pkt.priority < THRESHOLD) {
pkt.new_path = best_path[pkt.src_id];
} else { pkt.new_path = 1;}

}

Fig. 8: pFabric implementation in Domino. Packet and con-
stant definitions are elided for simplicity. The measurement of
path utilization is also omitted, which is similar to the monitor
function defined in Figure 1.

[9] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R.
Santos, “Elasticswitch: Practical Work-Conserving Bandwidth Guaran-
tees for Cloud Computing,” ACM SIGCOMM Computer Communication
Review, vol. 43, no. 4, pp. 351-362, 2013.

M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),” in
Proceedings of the 2010 ACM Conference on SIGCOMM, SIGCOMM
’10, (New York, NY, USA), pp. 63-74, ACM, 2010.

S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The Nature of Data Center Traffic: Measurements and Analysis,”
in Proceedings of the 9th ACM SIGCOMM conference on Internet
measurement conference, pp. 202-208, ACM, 2009.

T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding Data
Center Traffic Characteristics,” ACM SIGCOMM Computer Communi-
cation Review, vol. 40, no. 1, pp. 92-99, 2010.

A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]
[33]
(34]
[35]

D. A. Maltz, P. Patel, and S. Sengupta, “VI2: A Scalable and Flexible
Data Center Network,” in ACM SIGCOMM computer communication
review, vol. 39, pp. 51-62, ACM, 2009.

D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-Defined Networking: A Comprehensive
Survey,” Proceedings of the IEEE, vol. 103, pp. 14-76, Jan 2015.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling Innovation
In Campus Networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 69-74, 2008.

N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A Network Programming Language,”
in ACM Sigplan Notices, vol. 46, pp. 279-291, ACM, 2011.

J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular
SDN Programming With Pyretic,” Technical Reprot of USENIX, 2013.
R. Soulé, S. Basu, R. Kleinberg, E. G. Sirer, and N. Foster, “Managing
the Network with Merlin,” in Proceedings of the Twelfth ACM Workshop
on Hot Topics in Networks, HotNets-XII, (New York, NY, USA),
pp. 24:1-24:7, ACM, 2013.

R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer, and
N. Foster, “Merlin: A Language for Provisioning Network Resources,” in
Proceedings of the 10th ACM International on Conference on Emerging
Networking Experiments and Technologies, CONEXT ’14, (New York,
NY, USA), pp. 213-226, ACM, 2014.

C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “NetKAT: Semantic Foundations for
Networks,” in ACM SIGPLAN Notices, vol. 49, pp. 113-126, ACM,
2014.

M. Reitblatt, M. Canini, A. Guha, and N. Foster, “Fattire: Declarative
Fault Tolerance for Software-Defined Networks,” in Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined
networking, pp. 109-114, ACM, 2013.

A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple: Simpli-
fying SDN Programming Using Algorithmic Policies,” in Proceedings
of the 2013 ACM Conference on SIGCOMM, SIGCOMM ’13, (New
York, NY, USA), pp. 87-98, ACM, 2013.

F. Chen, C. Wu, X. Hong, Z. Lu, Z. Wang, and C. Lin, “Engineering
Traffic Uncertainty in the OpenFlow Data Plane,” in Computer Commu-
nications, IEEE INFOCOM 2016-The 35th Annual IEEE International
Conference on, pp. 1-9, IEEE, 2016.

M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable Flow-Based
Networking With DIFANE,” ACM SIGCOMM Computer Communica-
tion Review, vol. 40, no. 4, pp. 351-362, 2010.

A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling Flow Management for High-
performance Networks,” in SIGCOMM, pp. 254-265, ACM, 2011.

P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding Metamorphosis: Fast
Programmable Match-action Processing in Hardware for SDN,” in
Proceedings of the 2013 ACM Conference on SIGCOMM, SIGCOMM
’13, (New York, NY, USA), pp. 99-110, ACM, 2013.

M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker,
“SNAP: Stateful Network-Wide Abstractions for Packet Processing,” in
Proceedings of the 2016 ACM Conference on SIGCOMM, SIGCOMM
16, (New York, NY, USA), pp. 29-43, ACM, 2016.

A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Bal-
akrishnan, G. Varghese, N. McKeown, and S. Licking, “Packet Transac-
tions: High-Level Programming for Line-Rate Switches,” in Proceedings
of the 2016 ACM Conference on SIGCOMM, SIGCOMM 16, (New
York, NY, USA), pp. 15-28, ACM, 2016.

J. McClurg, H. Hojjat, N. Foster, and P. Cerny, “Event-driven Network
Programming,” in Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 369-385,
ACM, 2016.

H. Ballani, P. Costa, C. Gkantsidis, M. P. Grosvenor, T. Karagiannis,
L. Koromilas, and G. O’Shea, “Enabling End-Host Network Functions,”
in Proceedings of the 2015 ACM Conference on SIGCOMM, SIGCOMM
’15, (New York, NY, USA), pp. 493-507, ACM, 2015.

N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishnamurthy, J. Nelson,
and S. Peter, “Evaluating the Power of Flexible Packet Processing
for Network Resource Allocation,” in /4th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17), (Boston,
MA), pp. 67-82, USENIX Association, 2017.

Antlr, “http://www.antlr.org/.”

C. E. Hopps, “Analysis of An Equal-Cost Multi-Path Algorithm,” 2000.
NS2, “http://www.isi.edu/nsnam/ns/.”

QJUMP-NS2, “https://github.com/camsas/qjump-ns2.”

[36]

[37]

[38]

(39]

[40]

K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,” in
Proceedings of the 2015 ACM Conference on SIGCOMM, SIGCOMM
15, (New York, NY, USA), pp. 465478, ACM, 2015.

C. Trois, M. D. D. Fabro, L. C. E. de Bona, and M. Martinello, “A
Survey on SDN Programming Languages: Toward a Taxonomy,” IEEE
Communications Surveys Tutorials, vol. 18, no. 4, pp. 2687-2712, 2016.
G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState: Pro-
gramming Platform-Independent Stateful OpenFlow Applications Inside
the Switch,” acm special interest group on data communication, vol. 44,
no. 2, pp. 44-51, 2014.

M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan, “Flow-
Level State Transition as a New Switch Primitive for SDN,” in Pro-
ceedings of the Third Workshop on Hot Topics in Software Defined
Networking, HotSDN ’14, pp. 61-66, ACM, 2014.

B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The Design and Implementation of Open vSwitch,” in 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
15), (Oakland, CA), pp. 117-130, USENIX Association, 2015.

Fei Chen received his B.S. degree from North-
Eastern University, China, in 2012, and the Ph.D.
degree from Zhejiang University, China, in 2017,
all in computer science. His research interests span
networking and distributed computing, with a recent
focus on software-defined networking, data-plane
programming, and datacenter networks.

Chunming Wu received the Ph.D. degree in com-
puter science from Zhejiang University in 1995.
He is now a Professor in the College of Computer
Science and Technology, Zhejiang University. His
research fields include software-defined networks
and network virtualization. He has published over
80 peer-review papers at international conferences
and journals, which include INFOCOM, IWQoS,
GLOBECOM, IEEE/ACM TRANSACTIONS ON
NETWORKING, IEEE Communications Magazine,
Elsevier Computer Networks, etc.

Xiaoyan Hong is an Associate Professor in the
Department of Computer Science at the University
of Alabama and directs the Wireless, Mobile and
Networking Research Lab (WiMaN). She received
her Ph.D. degree in Computer Science from the
University of California at Los Angeles in 2003. Her
research interests include mobile and wireless net-
works, connected vehicular and transportation sys-
tems, underwater acoustic communication networks
and software defined networks.

Bin Wang is now the director of network and infor-
mation security laboratory of Hangzhou Hikvision
Digital Technology Co.,Ltd. His current research is
in next generation network technology, information
security, IoT security and network routing.

