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Abstract— Under security threats, today’s networks are being
made to be intrusion tolerant. In a large scale, services are con-
tinuing (at a degraded level) while compromising and recovering
are both progressing. One of the key problems in the restoration
procedure regards to the resource allocation strategies, typically
a minimized total cost concerning both service loss and resource
expense. In this paper, we investigate the achievable minimal
total cost and corresponding resource allocation strategy for
different situations. The situations include nonlinear relationship
between resource allocation rate and the restoration rate, and its
variant when time factor is concerned. We present cost models
and numerical results. The results show the impact from various
system parameters on the critical conditions for a successful
system restoration and the minimal cost. An important result
of our study suggests that tight operational region exists under
certain conditions.

I. INTRODUCTION

Despite the large amount of network security methods
deployed over the world, it is highly desired that today’s
networks, be it Internet, Ad hoc networks, or sensor networks,
are intrusion tolerant [3] [8], i.e., the systems are able to
continue its operation even under attacks. When this happens,
the performance of the system might degrade due to intrusion
but the service it provides must never stop. In the meantime,
the system’s owners will typically use large amount of re-
sources to restore the compromised system. Let us take an
Internet worm attack for example. Fig. 1 shows the spread of
Internet worm named Code Red in 2001. It infected hundreds
of thousands of machines and caused a huge damage [6]. The
figure shows that the infection rate was low at the beginning.
Then during a certain period the rate became very high. The
number of infected machines increased quickly. Eventually,
the infection stopped when people learned how to defend
the worm, and more and more machines were restored. The
worm finally died out and all machines became normal again.
Clearly, restoration of the system (here all the machines that
could be infected) started at a certain time and the effort
leaded to final recovery of the whole system.

One of the key problems in the restoration procedure
regards to the resource allocation strategies, typically a min-
imized total cost concerning both service loss and resource
expense. In the area of network security, cost has been used
as a factor in analyzing the damage resulting from denial
of service attacks [5], in suggesting investment strategies of
security solutions [2], and in server replication strategies [7].
But none of these work nor other publications have studied
resource allocation problem in restoration procedure and the
cost incurred in that procedure.

In this paper, we present cost analysis on resource allocation
for the restoration procedure. We focus ourselves on abstract
systems instead of studying a particular attacking event like
Code Red. We assume a system is comprised of a large

number of machines (nodes) which have same restoration
properties, e.g., recovery speed and restoration cost. And
the owner has only limited resource. We will investigate
the achievable minimal total cost and corresponding resource
allocation strategy for different situations. These situations
include nonlinear relationship between resource allocation
and the outcome - restoration rate, and its variant when
time factor is concerned. In the analysis, we model the
total cost as a sum of service loss and resource expense. In
lacking of closed form solutions, we present numerical results
showing impact from various system parameters, e.g, the
compromise rate, the initial system damage percentage, etc.,
on the critical conditions for successful system restoration, the
time achieving total restoration, the minimum cost, etc.. An
important result of our study suggests that tight operational
region exists under certain conditions. One unsolved problem,
though, is the validation of the model. Currently we are
searching for real resource usage data from various sources,
e.g., worm spread study. Nevertheless, the analysis and the
results presented in the paper sheds a light on optimal usage
of resources in combating network security breaches.

The rest of the paper is organized as follows. Section
II describes the system model and the cost model. Section
III introduces nonlinear functions for the restoration rates in
terms of the resource allocation rate, with time-variable and
time-invariable features. We then present cost analysis based
on the time-variable nonlinear function and time-invariable
nonlinear function in Section IV. Numerical results are given
in Section V. Section VI concludes the paper.

II. THE SYSTEM MODEL

When a system is in a restoration procedure, the state of
a system is decided by the rates of two opposite parties: the
compromise rate v of the attacker and the restoration rate
u of the owner. If the compromise rate v of the attacker is
larger than the restoration rate u of the owner, more and
more nodes in the system will be compromised. On the
contrary, if restoration rate u is larger, increasing number of
nodes will turn back to normal. The system is illustrated in
Fig. 2 as a rectangle, where the shaded area represents the
uncompromised part of the system, i.e., the service is still
available. Particularly, the left rectangle in the figure is a
normal system and the right one is a partially compromised
system. In Fig. 2, l is the full service ability of the system,
for example, the total number of nodes in the system. c is
the portion of the system that has been compromised, e.g.,
the number of infected nodes. The attacker and the owner
compete with each other in order to have full control over the
system. The rate of compromise v is decided by the attacker.
But the owner can adjust her restoration rate u which in turn
is constrained by the amount of resource that she allocates, for



example, budget, or manpower. However, if u < v, the system
will eventually be totally compromised by the attacker.

We identify two types of cost in the restoration procedure.
The first type is a service loss cost C1. It comes from
the fact that the compromised system can only provide a
degraded service to its clients. The second type is a restoration
expense cost C2. It comes from the fact that the system owner
must utilize all possible resources she possesses to put the
system back to work. These include manpower, investment
on new security software and hardware, the cost of recourse
to security companies, etc. The total cost C is the sum of the
loss and the expense: C = C1 + C2.

Fig. 1. Cumulative total machines infected by Code Red worm
(from www.caida.org)

Fig. 2. Normal (left) and partially compromised system (right)

The total cost is affected by the two closely related com-
ponents. If the system owner consumes more resources, that
is, increases the expense C2, the system will be restored
faster and the loss C1 will be smaller. If, on the contrary, the
system owner consumes less resources, that is, the expense
C2 is small, the system will be restored slower and the loss
C1 will be large. Complexities come from many aspects:
compromise rate v could be constant or time-varying, the
usage of resources is not necessarily contributing to the
restoration linearly, or the rate of restoration u could also
be constant or time-varying.

In this research, we will investigate the achievable minimal
cost for the situations that the usage of resources contributes
to the restoration not linearly. In addition, the nonlinear
relationship could be constant or variable over the time. For
simplicity, we assume the compromise rate v is constant over
time. This implies that the restoration is quick in the sense that
it recovers the whole system before it is fully compromised.
Or, it implies that the system is large so that the attacker could
not attack all nodes before the total recovery. In our analysis,
we will use a continuous model to approximate the discrete
number of computers compromised, given that the accuracy
is achievable when the system contains a large number of
computers. Such assumption is common in worm spread
research, for example, the modelling of Code Red worm
[9]. We also assume that resource can be spent at arbitrary

granularity and thus is regarded as a continuous variable. A
good approximation is achievable if the amount of resource
is large. Otherwise, once the optimal allocation is found in
continuous case, a brute force search in the neighborhood
will give optimal or near optimal integer solution.

III. RESOURCE ALLOCATION

In this section we define the nonlinear relationship between
the resource usage and the restoration rate. Let x be the rate
of resource spent for restoration, the restoration rate u is thus
a function of x, denoted as u(x). The relationship should
satisfy the law of diminishing marginal utility [1]. In addition,
the relationship could be constant or variable over the time.
We present functions capturing these features in this section.
Analysis on minimal cost will be presented in the next section
(Section IV) for both time-invariable and time-variable cases.

A. Necessary Conditions
Spending resources has several limitations, so to the restora-

tion. There are several conditions that the relationship of
the two, u(x) and x, should satisfy. First, the restoration
rate u should be 0 when no resource is allocated. That is
u(0) = 0. Second, the relation between the restoration rate
and the amount of resources allocated should obey a general
economics rule called the law of diminishing marginal utility
[1]. The law of diminishing marginal utility states that as
the individual’s consumption increases, the marginal utility of
each additional unit declines. In our cases, as the amount of
allocated resources increases, the restoration rate increases but
the amount of this increase declines. According to definition,
the law of diminishing marginal utility requires that

du(x)
dx

> 0,
d2u(x)

dx2
< 0

Third, there is an upper bound for the restoration rate, i.e.,
the rate of restoration can not be arbitrarily large even if the
resource allocation could be infinitely large. This is true that
a single recovery action has to spend a minimum amount of
time. For example, when a machine is compromised by an
Internet worm, a minimum time must be spent before it can
be recovered. The time is needed for figuring out the problem,
installing a solution, etc. Thus we have limx→∞ u(x) = A,
where A is the upper bound.

B. Time-invariable Restoration Rate
One class of function that satisfy the above three necessary

conditions is:

u(x) = A(1− ρδx), 0 < δ ≤ 1, 0 < ρ < 1 (1)

where ρ and δ are parameters that control the effectiveness
in using resource x. This class of function is widely used
by economists [2] in modeling the relationship between the
investment and the outcome. Fig. 3 shows how the restoration
rate changes when allocation x increases. Clearly, the three
conditions are all satisfied. The time-invariable feature says
that the restoration rate never changes during the whole period
of restoration, given a specific x.
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Fig. 3. Function for Time-invariable Restora-
tion Rate

C. Time-variable Restoration Rate
In addition to nonlinearly relating to the resource allocation,

the restoration rate u can also change over the time in
some scenarios. Such a function is denoted as u(x, t), where
parameter t is for time. For example, given a group of persons
fixing a worm attack, when time goes by, the increased
experience would result in quicker restoration rate. In addition
to the three necessary conditions, the time-variable restoration
rate should satisfy u(x, 0) = 0. Here we propose to use the
following time-variable function:

u(x) = A(1− ρ(1−rθt)x), 0 < θ ≤ 1, 0 < ρ < 1, 0 < r < 1 (2)

where ρ, θ and r are parameters that control the influence of
resource x and time t. Fig. 4 shows the relationship. Clearly,
the same upper bound exists since each restoration action
needs at least a minimum time. The function also captures
the feature that the more the resources allocated, the higher
the restoration rate. But there exist an efficient zone where
increasing the resource usage contributes greatly towards the
restoration rate.

u(
x,

t)

t

restoration rate

x1
x2
x3

rate limit

Fig. 4. Function for Time-variable Restoration
Rate, here x1 < x2 < x3.

IV. COST ANALYSIS

In this section we present analysis on minimum cost for
systems that the restoration rate u has the aforementioned
function in relating to the resource usage and time. In the
general discussion, we use u(x) for simplicity. We assume
the time that the system starts recovery is time t = 0. The
system state is illustrated at the right side of Fig. 2. Thus,
total restoration of the system needs time:

c

u(x)− v
(3)

Let the maximum loss rate to be m when the system is
totally compromised. When the system is partially compro-
mised, the loss rate is proportional to the percentage of system
compromised. Thus at time 0, the loss rate is c

l m.

It is easy to see that the loss rate at time t is

c− (u(x)− v)t
l

m

So the loss in this period is

C1 =
∫ c

u(x)−v

0

c− (u(x)− v)t
l

mdt

=
mc2

2l(u(x)− v)
(4)

The expense for restoring the system during the time ( 3),
is

C2 =
c

u(x)− v
x (5)

Then the total cost for the restoration is

C = C1 + C2

=
mc2

2l(u(x)− v)
+

c

u(x)− v
x (6)

The constraints are: first, u(x) > v must be satisfied,
since this is necessary for a successful restoration; second,
the owner’s resources are limited, we must have

c

u(x)− v
x ≤ R

where R is the upper bound of owner’s resources.
The problem of how to allocate resources so that the total

cost is minimum can be formulated as:

minimize

f(x) =
mc2

2l(u(x)− v)
+

c

u(x)− v
x (7)

subject to
c

u(x)− v
x ≤ R (8)

u(x) > v (9)

A. Cost Analysis for Time-invariable Restoration Rate

For time-invariable restoration rate u(x) with function (1),
the minimum cost problem can be rewritten to

minimize

f(x) =
(mc2)/(2l)

(A(1− ρδx)− v)

+
cx

A(1− ρδx)− v
(10)

subject to
cx

A(1− ρδx)− v
≤ R (11)

A(1− ρδx)− v > 0 (12)

No closed form solutions can be obtained directly. Numer-
ical results will be presented in the next section. On the other
hand, we give further analysis on constraint (11), which is
critical for a successful restoration. The constraint (11) can
be rewritten as

c

R
x + v ≤ A−Aρδx (13)

Let θ(x) = c
Rx + v and u(x) = A − Aρδx. The two

curves could have zero, one, or two intersecting points (Fig.



5) depending on the values of c, v, and R. When c/R or
v is too large, there is no intersection. For θ(x) ≤ u(x)
(so to satisfy constraint 11), these two curves must have at
least one intersecting point. The interval between the two
intersection points a and b gives the operational region for
resource allocation for a specific scenario where the system
has given v, c and R.

On the other hand, the least condition for a possible
restoration operation occurs when the two curves are tangent.
At that point, we are able to study the relations among system
conditions c, v, and R. The results are critical which directly
indicate whether a restoration is feasible before the system
is totally compromised. We solve the problem by taking
derivative of both sides of (13)

c

R
= −Aδρδx ln ρ

Then we get the boundary condition for constraint (11):
δR(A− v)

c
ln ρ + 1 = ln c− ln(−ARδ ln ρ) (14)

Studying the relations of c, v, and R depicted by Condition
(14) leads to important results. For examples, we can obtain
the minimum resource required for a success restoration given
v and c; We can also calculate the latest time (the maximum
portion c) that the owner has to start restoration given the v
and R. These results are shown in Section V.

y

x

θ (x)

u(x)

a b

Fig. 5. Constraint θ(x) ≤ u(x)

B. Cost Analysis for Time-variable Restoration Rate
The restoration rate u is now a function of both x and time t

as represented by Formula( 2), i.e., u(x, t) = A(1−ρ(1−rθt)x).
In solving the minimum cost problem, we use differential
equations. Fig. 6 shows a partially compromised system at
time t (time 0 is the time that the restoration begins, with c
portion of the system compromised). Thus the light shaded
part represents the restoration effort since t = 0. This portion
is denoted as s(x, t), given the resource allocation rate x. Note
that s(x, t) could be positive or negative. If s(x, t) is negative,
it means that after restoration begins, more machines are
compromised (since the initial restoration rate could be small).
Let f(x, t) be the total cost incurred till time t, h(x, t) be the
expense until time t, then we have the following derivative
equations:

ds(x, t)
dt

= u(x, t)− v (15)

df(x, t)
dt

=
c− s(x, t)

l
m + x (16)

dh(x, t)
dt

= x (17)

s(x, 0) = 0, f(x, 0) = 0, h(x, 0) = 0 (18)

Fig. 6. System with u(x, t)

Let the time that the system is totally restored be τ(x),
the total cost incurred during this restoration procedure is
then f(x, τ(x)). For each possible x, there is a corresponding
cost f . Our task is to find the x (denoted as x∗) where the
corresponding cost f is minimum. The problem is formulated
as follows:

minimize f(x, τ(x))
subject to h(x, τ(x)) ≤ R (19)

We will give numerical solutions in the next section.

V. NUMERICAL RESULTS

In previous sections we have introduced our cost models for
two restoration rates, one is resource-bounded and the other
has a time constraint in addition. The minimal cost solutions
for the two cases can not be solved in the closed forms. In
this section we provide numerical results. All the numerical
solutions are obtained through Maple [4].

For the purpose of easy illustration, we use and present
integer numbers in the results. These numbers allow us to
show the relations among the variables in question and the
scale of changing trends. However these numbers by no means
reflect any real scenarios in practice. To make the model useful
for a particular real world event, estimations of the parameters
must be conducted. The specific system parameters are: The
network is composed of l = 5, 000 nodes; the maximum loss
rate is m = 100, 000 if the system is totally compromised; The
maximum possible restoration rate is A = 100. The following
parameters are varied for the different results we show. But
when not varied, they take the following default values: The
maximum resources is R = 50, 000; The compromise rate is
v = 50; Initial compromised system is c = 500.

A. Time-invariable Restoration Rate

For time-invariable restoration rate u(x) with function (1),
we use parameters ρ = 0.996 and δ = 0.9. The curve is
illustrated in Fig. 3.

1) restoration vs. resource allocation: Fig. 7 shows the
increase and decrease trends of the total cost, expense and
loss when the resource allocation rate (x) increases. The
figure shows that as x increases, expense increases but loss
decreases. As a result, total cost first decreases then increases.
At one specific point, total cost reaches its minimum value.
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Our other results also indicate that a larger compromise rate
will incur larger total cost, but minimum cost is achievable.
On the other hand, when resource allocation rate x increases,
time spent for recovery decreases. We have used τ to denote
the time needed for total restoration. The result is shown
in Fig. 8. Clearly, when more resource can be allocated, it
is not necessary that the time needed to restore the whole
system reduces proportionally, since the usage of the resource
becomes less effective. When the compromise rate increases,
τ increases as expected.

2) Achieving minimum cost: We have seen that for each
specific c and v, there exists a x∗ at which the cost is minimal.
The Figures 9 and 10 show how the minimum cost C∗ and
x∗ are influenced by various c and v. The observation is that
as c or v increases, minimum cost C∗ and the associated x∗

increase. The figures also show that when v and c are too
large (here when v > 70 at c = 1000), the minimum cost is
not achievable.

3) The critical condition: The relationship among c, v, and
R is expressed in Equation (14). It provides us opportunities
to illustrate constraints from system parameters on a success-
ful restoration. For example, Fig. 11 shows the minimum total
resource required for a successful restoration under various c
and v. A later start of restoration (larger c) or a stronger attack
(larger v) all require larger amount of available resources. Less
total resource will lead to a failure of restoration. Fig. 12
shows the operational region when the total resource is given.
The figure suggests that for a specific v, the restoration must
start no later than the presented value of c. Otherwise, no
matter how the allocation rate x will be, total restoration is
impossible. The figure also shows that the larger the R, the
wider the operational region, which tolerates larger ranges of
v and c.

B. Time-variable Restoration Rate

The time-variable restoration rate u(x, t) has a function in
the form of Equation (2). We use parameters ρ = 0.996, θ =

0.993 and r = 0.9 here. The curve is illustrated in Fig. 4. The
solutions towards the minimum cost rely on solving equations
(15) to (18) (Section IV-B).

With the help from Maple, we are able to get the values
of costs for various system variables, and to draw the various
cost curves. Fig. 13 shows how a cost value can be calculated.
Given an x, curves s(x, t), h(x, t) and f(x, t) are generated
by Maple. At the time of s(x, t) = c, the whole system is
restored. Recall the time is denoted as τ . Thus the value of
f(x, t) at t = τ is the total cost spent for recovery. The value
of h(x, t) at τ is the expense. We use this method to compute
the cost for each x and the minimum cost is the minimum
value cross all the x’s.

t

h(x,t): expense

f(x,t): total cost

c

s(x,t)

cost

t

Fig. 13. Calculating the cost.

1) restoration vs. resource allocation: Fig. 14 shows the
cost, expense and loss as the functions of the resource
allocation rate x. Here c = 500 and v = 50. The figure shows
the same cost change trends as Fig. 7 where u(x) does not
change over time. The similarity of the two figures is expected
since u(x, t) should only affect the value of the cost, but not
the relation between the cost and the resource allocation rate.
The minimum cost exists at x∗.
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Fig. 15 then shows how the cost changes with increasing x
at different compromise rate v. It is clear that as v increases,
the cost increases. The figure also suggests that minimum
costs exist. However, the figure reports early terminations of
the cost curves for some large v. For example, the curve for
v = 80 ends before x reaches 1500 while the curve for v = 40
extends well beyond x = 5000. This phenomenon indicates
the failures of total recovery at these non-data points because
of the exhaustion of the resources. On the other hand, the
figure suggests that when the compromise rate is high and the
resource is limited, a smaller rate of resource allocation, which
possibly produces more efficient restoration, could yield a
better result, i.e, a complete restoration. Our other results
also show that corresponding curves of τ reveal the same
phenomenon.
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2) Achieving minimum cost: Figures 16 and 17 show how
c and v influence the minimum cost C∗ and the corresponding
x values x∗. Fig. 16 shows that increasing v and c incur
higher C∗, similar to the trends observed in Fig. 9. The

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 40  45  50  55  60  65  70  75  80

x*

v

Influence of c and v on x*

c=200
c=500

c=1000

Fig. 17. Influences of c and v on x∗, for time-varying
rate.

figure also suggests that when v and/or c is too large, no
total restoration is possible. Thus the minimal cost can not
be achieved. Or, say, the minimal cost occurs at the largest
successful allocation rate. This explains Fig. 17 where x∗

decreases when v increases. Those x∗ are the points that
restoration is possible, but not minimum.

VI. CONCLUSIONS

In this paper, we provide analysis on the cost incurred
when restoring compromised systems. Resource allocation
is the major influential factor in our analysis. Typically the
usage of the resource contributes to the restoration nonlinearly,
following the law of diminishing marginal utility. We study
both time-variable and time-invariable behaviors. Our results
are presented using numerical methods. The results suggest
that the minimal cost is achievable for many conditions, but
tight optional regions also exist. Our future work is searching
data to estimate the parameters for practical scenarios and
validating the models.
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