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Abstract: In wireless sensor networks, many routing algorithms are designed to implement 
energy-efficient mechanisms. Among those, some focus on maximising an important 
performance index called network lifetime, which is the number of messages successfully 
delivered in the network before a failure. In this paper, we propose a new online algorithm taking 
the goal of prolonging network lifetime. When making routing decisions, our algorithm, named 
Traffic-Aware Energy Efficient (TAEE) routing protocol, utilises prospective traffic load 
information for further load balance, in addition to power-related metrics used in an enhanced 
cost function in calculating least cost paths. An algorithm for automatic parameter adaption is 
also described. To better accommodate to large-scale sensor networks, we further introduce a 
random grouping scheme which enables hierarchical TAEE routing to run within and cross the 
dynamically formed groups to reduce computation and routing overhead, while maintaining 
global energy efficiency. Our simulation shows that compared with the leading power-aware 
Max-min zPmin protocol, the TAEE protocol generates better performance in terms of network 
lifetime without jeopardising network capacity. 
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1 Introduction 

In recent years, Wireless Sensor Networks (WSNs) have been 
extensively researched and increasingly deployed in a  
vast range of civil, industrial and military applications. The 
mass production lowered the unit price, and the technical 
innovation boosted the sensor capabilities. However, some 
long-existing limitation of sensor nodes which impacts 
communication protocol design have not changed, e.g. most 
sensor nodes are still battery powered with limited energy 
conservation, and the wireless transmission still incurs  
high power consumption. At the same time, out of the lab, 
applications often require large-scale deployment which 
covers large area with complicated terrain, in which the 
message generation and collection may follow special 
requirements on quantity and frequency. This further puts 
challenges on communications in WSNs. 

Energy efficiency of WSNs has been tackled at all the 
layers of communication protocol stacks. Among them, 
energy-efficient routing is one of the most important issues. 
Existing research can be categorised into classes such as:  
(1) least cost path-based approaches (Li et al., 2001; Toh, 
2001; Hong et al., 2002; Misra and Banerjee, 2002; Akkaya 
and Younis, 2003; Kar et al., 2003; Gao and Zhang, 2004; 
Park and Sahni, 2006), (2) max-flow problem-based 
approaches (Chang and Tassiulas, 2000; Zussman and  
Segall, 2003; Chang and Tassiulas, 2004; Sadagopan and 
Krishnamachari, 2004), (3) data fusion and network coding 
approach (Heinzelman et al., 2000; Luo et al., 2005a; Ciancio 
et al., 2006) and (4) topology and deployment control-based 
approaches (Shah and Rabaey, 2002; Bogdanov et al., 2004; 
Kannan et al., 2004; Chatterjee et al., 2005; Kawadia and 
Kumar, 2005), etc. In these researches, different design 
objectives and metrics are addressed. Some metrics being  
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measured include total power consumption, maximum 
throughput, the degree of power level variance of sensor 
nodes, cost per packet and the number of data packets 
extracted from the sensor nodes, etc. Many schemes seek to 
maximise the network lifetime. Among several definitions of 
lifetime, one is measured by the network’s length of operation 
in number of successfully delivered messages until any 
message fails to be routed because of energy depletion. With 
this definition, other factors possible causing failures, such  
as hardware failure, noise, MAC overflow, are not counted. 
Energy is treated as the major reason. Another definition  
can be the time until the network is partitioned due to  
power depletion of some nodes. The former definition is 
especially suitable when each message is considered with 
equal importance in the network. In this paper, we use the 
former definition as our design goal. 

Many existing work studies the scenario where message 
generation and transmission is cyclical in time, and the 
message distribution is uniform within a geographic field.  
In many other applications, data generation and transmission 
by the sensors are triggered by the change of metrics being 
monitored. In the latter scenario, event distribution is  
not uniform in space, and traffic can also bear a certain 
predictable demand through the time. In this paper, we 
propose a scheme that exploits the information about the 
sensors’ prospective traffic load. The uneven distribution 
allows detouring routes away from hot spots in order to 
achieve longer lifetime. Specifically, our scheme makes route 
decision based on not only power-related metrics as used by 
many related work, but also the future traffic characteristics. 
This factor is significant in balancing traffic when the traffic 
initiation pattern is not even. In reality, this scenario is typical 
in many applications. For example, consider a battle field 
sensor network for motion detection. When a tank moves in 
the network area, sensor nodes near the tank tend to send 
more collected data in order to achieve higher precision of 
monitoring, while other nodes farther away may only need  
to transmit low-frequency data or keep in sleeping mode 
without sending any data at all. In addition, for large-scale 
sensor networks, multiple data collection base stations can be 
a necessity in order to satisfy requirements of fault tolerance, 
load balancing and efficiency. Our proposed routing scheme 
particularly fits in these scenarios. 

Our scheme is named Traffic-Aware Energy Efficient 
routing protocol (TAEE) accordingly. This work extends 
our earlier paper (Liu and Hong, 2006) with substantial  
new and revised content on scheme design, analysis and 
evaluation results. The design goal is to maximise the 
network lifetime with heuristic algorithms. The routing 
algorithm is equipped with a new cost function using both 
transmission power and residual energy, with an emphasis 
on the power residual ratio of sensor nodes indicating risks 
of depletion. We further add a new metric to quantify the 
prospective traffic load and use it to further optimise a 
selected path based on the aforementioned cost function. 
Aligning with many existing work (e.g. Li et al., 2001) that 
requires each sensor node to have knowledge of the network 
topology and all sensor nodes’ power levels, the TAEE 
scheme uses this dissemination mechanism and adds to it to 

carry the traffic load information. We expect such addition 
does not introduce noticeable burden to the routing process. 

In addition, we take communication and computational 
overhead into consideration when sensor network grows 
large. We use traditional hierarchical routing architecture for 
the scalability. Our contribution is a dynamic random group 
mechanism to support a two-tier hierarchy. TAEE runs within 
the groups so it incurs less computation and communication 
overhead. Such design eliminates the boundary effect that 
occurs to grid or zone-based hierarchical solution. 

In evaluating our protocol, we compare our protocol with 
the max-min zPmin Algorithm (MMZ) (Li et al., 2001), a 
representative and leading scheme that belongs to the same 
category as TAEE. In MMZ, existing network status about 
global power consumption and residual energy is considered. 
The simulation results show great improvements in network 
lifetime under various conditions. 

The rest of the paper is organised as follows. First, 
Section 2 gives the network model of this work. Section 3 
describes the TAEE protocol in detail. We present the 
simulation results in Section 5. Section 6 gives a brief 
review of energy-efficient routing protocols for WSNs. 
Finally, Section 7 concludes the paper. 

2 System model 

The power consumption of a sensor node consists of 
computation and communication expenses. Generally, the 
power consumed for computation is much less than that 
spent on communication, with the difference typically of 
three orders of magnitude (Kang and Li, 2006). Thus, we 
focus primarily on communication power consumption in 
the TAEE algorithm. We then examine the computational 
power consumption together with communication power 
consumption for large-scale sensor networks. In order to 
reduce communication power consumption, sensor nodes 
are typically designed to have two states of operation: idle 
state and active state (Shnayder et al., 2004). In this work 
we only consider the optimisation of the power consumption 
of the sensor nodes in active state. 

We view the sensor network as a graph with vertices and 
edges representing the sensor nodes and their direct wireless 
links respectively. Specifically, the graph can be represented 
by G(V,E), with weighted vertices V and edges E. The 
weights of V indicate the power residual of the sensor nodes, 
and the weights of E represent the amount of power required 
to transmit data between the connected sensors. According to 
the distance between two sensors, the power consumption 
required to successfully transmit a data message can be 
modelled as e = kdc + b (Heinzelman et al., 2000), where d is 
the distance, k, c and b are hardware and environment-
dependent constants. 

The sensor network has a bootstrap phase, during which 
the geographical position and topological information 
(through beacons) is determined and disseminated. The 
position information can be acquired by devices like GPS, or 
by localisation algorithms (e.g. Bulusu et al., 2000; Sawides 
et al., 2001). The dissemination of these informations can be 
realised by broadcasting or integrated with direct diffusion 
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(Intanagonwiwat et al., 2000). If the sensor network has some 
dynamics, e.g. topology change due to energy depletion at 
some nodes, mobile sinks, etc., the broadcasting can be 
periodic in a low rate, or change-triggered in order to reduce 
communication overhead. 

In the bootstrap phase, together with the network 
topology information, nodes also distribute their initial 
residual energy information. Then, with the initial global 
view of the energy residue levels of all nodes in the 
network, the sink can use an all-pairs shortest path 
algorithm such as Floyd-Warshall algorithm (Cormen et al., 
1990) or Johnson’s algorithm (Johnson, 1977) to construct a 
shortest-path spanning tree rooted at the sink with the  
edge weights taking transmission power consumption into 
consideration. Later, the spanning tree will be used and 
updated in our protocol (details in Section 3). 

Our design goal is to maximise the network lifetime with 
heuristics. The metric of lifetime is defined as the network 
operation length until the first failure of message delivery due 
to network partition or node energy depletion. The message 
delivery considers messages from all the sources. As we 
target on design an online power-aware routing scheme,  
it is assumed that the sequence of messages is not known  
for the purpose of performance optimisation, following the 
preconditions described by Li et al. (2001). With this 
assumption, off-line algorithms for lifetime optimisation 
cannot be used. It is desirable that online power-aware 
routing scheme can maximise the sensor network’s lifetime. 
However, it has been proved that no algorithms running in 
polynomial time can be developed to solve the optimal 
problem to maximise lifetime (Park and Sahni, 2006). In this 
paper, we develop a heuristic scheme to achieve the design 
goal by fully exploiting the characteristics of network  
status in energy level, topology and traffic load pattern. 
Furthermore, when the network scales up, we seek to use 
hierarchical routing to accomplish the goal with controlled 
communication and computation overhead. 

3 Traffic-aware energy efficient routing protocol 

The Traffic-Aware Energy Efficient (TAEE) routing protocol 
is a least-cost based routing algorithm. The path selection 
consists of two steps. The first step is initial shortest path 
spanning tree construction with a cost function using power-
related metrics including power consumption and residual 
energy ratio. We believe that the residual energy of a node is 
important when the network lifetime is concerned. An early 
death of a node (usually a hot spot in the network) could stop 
an on going traffic, leading to a reduced network lifetime. 
Thus, in calculating the cost function for the path selection, 
we seek to emphasise the influence from residual energy with 
a balance to the transmission energy. By doing so, we will 
reduce the traffic on nodes that have less energy. In the 
second step, we trim nodes from the resulting spanning tree 
using prospective traffic load and recalculate the least-cost 
path. This second step is equivalent to reserving power  
 
 

proactively at nodes en-route. In order to capture this 
information, we derive a new metric called prospective load 
ratio. In all, the TAEE protocol calculates a best path using 
the cost function and the new metric. 

This section is organised to first introduce the metric 
relating to prospective traffic load, including dissemination 
of traffic and energy states of each node and calculation of 
the metric. We then describe our TAEE routing protocol, 
including the new cost function, the routing algorithm and 
the adaptivity of the algorithm. Discussions are made 
whenever needed. 

3.1 Traffic load pattern utilisation 

3.1.1 Dissemination of prospective traffic load 

The knowledge of prospective traffic load at a source sensor 
includes its sink, data rate and its proximate lasting time. In 
order to utilise the information, the source must disseminate it 
to all the active nodes in the network which participate in 
routing. The active sensors can distribute this information 
together with the message that propagates energy level and 
topology information, as has been adopted by many previous 
works. The information update can be either periodical or 
instantaneous by triggering. In all, the transmission overhead 
for traffic load is integrated with other propagations. An 
example update message sent from a normal active sensor 
looks like < IDi, Pi, ttl >, and that from a source sensor i 
looks like < IDi, Pi, ttl, Sinki, TPi, t >. 

In the messages, IDi is sensor node i’s identity. Pi is i’s 
the residual power, and Sinki is the ID of the intended sink 
chosen by node i. Here we assume each node knows its 
intended sink. TPi is the prospective traffic load in average 
number of packets per unit of time at sensor i, and t 
indicates the effective time period of TPi. The ttl value 
determines the number of hops the update message should 
be forwarded. If deployed to large-scale sensor networks, 
the ttl depends on the specific implementation of our 
hierarchical routing using random grouping to be discussed 
in the next subsection. From now on we call the sensor 
information update message SIU message. SIU messages 
are multicasted through the spanning tree with minimum 
total power consumption. After a node j receives a SIU 
message originated from the source sensor node i, it updates 
its residual energy and topology map of the network. If the 
SIU includes source traffic information, the node j also 
updates its prospective traffic load metric (as below). The 
SIU message is propagated from the sources independently 
without synchronisation and experiences different delays  
to reach other sensors. Thus, sensors could have slight 
inconsistency about the traffic information in the whole 
network. Such possible inconsistency would not have a 
great impact on the overall routing heuristic, providing  
the session length is much larger than the maximum  
time required for SIU dissemination. In addition, when the 
network size becomes large, the proposed dynamic grouping 
scheme can help control the propagation area and latency. 



188 J. Liu and X. Hong 

3.1.2 Prospective traffic load ratio 

For a source-destination traffic pair (source i to the sink 
Sinki), the influence of its traffic on a node relates to the 
distances of this node to the source and to the destination. 
We use the term prospective load (PL) to quantify the value. 
For example, for node j, the closer it is located to the source 
node i, or to the destination Sinki, the more likely node j will 
be chosen to form the path for transmitting data, thus the 
larger value PL should be. Figure 1 illustrates an example. 
The network has source node S and the sink D. The bold 
lines indicate the shortest-path spanning tree. The double 
line represents the shortest-path between S and D. The grey 
level of the shade covering the path gives a basic idea of 
how the distribution of PL values contributed by the path 
looks like. The darker the colour, the larger the PL value a 
node has. 

Figure 1 PL values on shortest path spanning tree 

 

Given a path started from node i with traffic load TPi, we 
use formula (1) to calculate the PL value at node j: 

( ) ( ) ( )( ), , ij i j j Sink iPL i f d f d TP= + ×  (1) 

where dx,y represents the distance (the sum of the link costs) 
between node x and node y along the shortest path in the 
spanning tree. f is a parameterised monotonically decreasing 
function such that ( ) [ ] ( )0,1 , 1f x f x∈ →  when 0;x →  
and ( ) 0f x →  when ,maxx x→  where maxx  is the 
maximum possible value of x. The essential of the f(x) 
function is that it is monotonically decreasing and bounded 
in [0,Xmax], so the variation of the output of f(x) represents 
the impact of x on the prospective traffic load. 

When designing functions satisfying the above 
requirements, we have multiple choices which reflect the 
considerations for different scenarios. For example, we can 
have the following function: 

( )
( )( )
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f x
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This function decreases relatively slow when x drifts 
slightly from 0, followed by a faster dropping speed when x 
approaches the middle value between 0 and xmax. When x 
continues to increase towards xmax, the decreasing speed 
again becomes low. As a second example, consider this 
function: 
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+
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This function decreases faster as x increases when x is near 0, 
and slower when x approaches xmax. The slope patterns of the 
f(x) functions interpret how the change of distance (x) would 
impact the prospective load, and different network scenarios 
could have diverse matching f(x) functions. For example, the 
f1(x) function is suitable for scenarios where the prospective 
traffic load (the PL value) on nodes is not sensitively affected 
by the distance (in the spanning tree) within a threshold value 
to the shortest path of the traffic, and when the distance 
exceeds the threshold, the prospective traffic load would 
dramatically decrease. Unlike f1(x), the f2(x) function fits into 
another scenario in which the prospective traffic load value is 
strongly bounded with distance to the shortest path (in the 
spanning tree). For simplicity we adopt f1(x) in our simulation 
studies. 

When the network has k active communication flows, 
node j calculates the total PL value as: 

2

2 1.
4max max max

b
x x x

= −
− + +

 

The PL value reflects the possible total traffic load on a 
node. The prospective load ratio (PLR) is defined as the 
likelihood of this node participating in routing for a source 
s, i.e. PLRj(s) = PLj(s)/PLj. PLR is utilised for node 
trimming and is discussed in the next subsection. 

3.2 Traffic-Aware Energy Efficient (TAEE)  
Routing Algorithm  

The TAEE algorithm has two main operations. The first is 
to construct a minimum shortest path spanning tree given an 
emphasis on the residual energy, and the second operation is 
to trim nodes from the tree according to PLR value, and  
to recompute the path. We describe the routing algorithm  
as below. 

We use existing algorithm like Floyd-Warshall to 
compute an all-pair shortest path spanning tree. The edge cost 
for calculating the shortest path takes the residual energy  
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level and energy consumption of transmitting along the link 
into account. For a pair of mutual-reachable sensor node i and 
j, the new weight of the edge i j→  is calculated as: 

( )
,

,
, _

i j
i j

i i j i init

e
w

P e P k
=

− +
 (2) 

where ei,j is the energy required to transmit over a distance 
between i and j, Pi is the current power level of node i, Pi_init 
is the initial power level of the sensor nodes and k is a  
non-negative parameter. We include Pi_init in the formula, 
considering nodes in the network could have different initial 
power level. The formula (2) emphasises that transmitting  
a message by a low residual energy node is less preferred 
over transmitting by a node with higher residual energy, in 
addition to the reduction in total path power consumption. For 
example, given two independent direct links that transmit a 
message consuming the same energy, the link with its sender 
having higher residual power will have a lower weight and 
more likely be chosen. Or say, when constructing the shortest 
path spanning tree, a less consumed node will be chosen.  
The parameter k ≥ 0 is used to adjust the level of this 
emphasis. A larger k results in weaker impact of the potential 
residual power ratio. In implementation, we choose k = 0 for 
simplicity, and bound the residual power ratio to be no less 
than 1% of its initial power. 

The routing path selection will then be optimised for 
load balance by using the PLR value. Specifically, we use 
PLR to trim nodes from the aforementioned spanning tree 
and recompute the path. For data generated by sensor s and 
sent to the corresponding sink node Sinks, the TAEE 
algorithm is described in Algorithm 1, in which th ∈ [0,1] is 
an adjustable global threshold value (an adaption algorithm 
will be proposed in the next subsection). 

Algorithm 1 TAEE Algorithm 
1 Construct the all-pairs shortest path spanning tree 

using Floyd-Warshall algorithm if updated SIU 
message is received since last transmission. 

2 Find the shortest path sp between s and Sinks inthe 
spanning tree. 

3 For each node j except s and Sinks, and for each active 
transmitting source i, calculate PLj(i), total to PLj and 
calculate PLRj(s). If PLRj(s) < th, remove node j 
temporarily from the graph only for computation in  
Step 4. 

4 Run Dijkstra algorithm to find the shortest path 
from s to Sinks 

5 If path is found, the resulting path is the solution. 
Otherwise take the path generated in Step 2 as 
thesolution. 

In Step 3, if a link does not have a large enough PLRj (s) 
corresponding to its source-sink pair < s, Sinks > at node j 
(i.e.  PLRj(s) < th), then it is considered that other source-sink 
pairs are having heavier prospective load on that node. 
Therefore, the node j will not be chosen to consist the routing 
path for < s,Sinks >. This says that the best shortest path 
linking a heavy loaded source-destination pair is protected 
from being assigned to forward data for a lightly loaded flow. 

As a result of the algorithm, the lightly loaded flow will take 
a longer path than the best path it could have (when no 
prospective load influence is considered). Thus, our protocol 
prevents the sensor node that prospectively carries heavy 
traffic load from being added into a new path with lighter 
traffic load, i.e. it effectively reserves energy on that node, 
and it also distributes traffic to more disjoint paths. 

Figure 2 gives an example illustrating the execution of 
the algorithm. Figure 2(a) shows that two traffic flows with 
source and sink pairs < S1, D1 > and < S1, D2 > reach a 
steady state. The pair < S1, D1 > has light traffic load and  
< S2, D2 > has medium traffic load respectively. Figure 2(b) 
shows the path change of flow < S2, D2 > when <S1, D1 > 
pair increases traffic load from light to heavy. After the load 
increases, when running TAEE algorithm, it is no longer 
possible to include the nodes en-route of the flow < S1, D1 > 
in the path for flow < S2, D2 >. That is because that the PLRj 
(S1) (j is one of the intermediate nodes for previous < S2,  
D2 > path) resulted from the <S1, D1 > flow becomes large 
compared with the flow <S2, D2 >’s PLRj(S2). Those nodes 
will be trimmed when calculating new paths for the flow  
< S2, D2 >. In this case, temporarily cutting these nodes in 
Step 3 results in a new path from S2 to D2 as shown in 
Figure 2(b) when re-calculating a least cost path in Step 4. 

Figure 2 An example of TAEE routing (see online version  
for colours) 
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Note that when determining the nodes to remove in Step 3, 
we only consider the prospective traffic load ratio instead of 
the absolute value. To validate this measure, consider the 
following scenario: during the initial stage of the network 
lifetime, when a node has two flows potentially passing 
through it, even if the two flows are both light-traffic, when 
running the TAEE algorithm the node could be removed from 
the path calculation of the flow with lighter traffic due to its 
PLR is lower than the threshold (in Step 3), while the flow 
with heavier traffic (even though it is still light) includes the 
node in its forwarding path. We observe this is reasonable 
measure because reserving the node for the flow with heavier 
traffic can prolong network lifetime. Particularly, this is true 
when the two flows last for long time and the node’s energy 
could be exhausted earlier by forwarding both of them. 

Another consideration is how the algorithm performs 
when a sink has many sources forwarding data to it. 
Apparently the lifetime is associated with the power level of 
the neighbouring nodes surrounding the sink. By TAEE  
the flow with heavier traffic load always takes advantage 
from selecting the last-hop node which results in shorter 
forwarding path, which means it is less likely that excessive 
nodes in the neighbourhood of the sink will be chosen to form 
paths. On the other hand, the lighter-traffic flows may need to 
yield to heavier-traffic flows and detour before reaching the 
sink. We observe this is the best routing decision available, as 
otherwise if the flow with heavier traffic had to detour, it 
would deplete the energy of the sink’s neighbouring nodes 
faster, thus shorten the overall lifetime. 

3.3 Adaptive parameter in TAEE 

The th value is an important factor which impacts the 
performance of the TAEE algorithm. If th = 1, all nodes in 
the network except the source and the sink are removed in 
Step 3, thus no multi-hop routing is possible except the 
direct link if it exists. If th = 0, no nodes in the network is 
removed; therefore, the algorithm reduces to only using  
the cost function in formula (2) without any prospective 
traffic load information. In other words, if th is too small, 
the algorithm will fail to cut enough nodes which are 
prospectively heavily loaded by other source/sink pairs, and 
the energy reservation will become less effective. 

An appropriate th value has to be adaptive with the 
dynamic traffic pattern. Here we use a binary-search 
approach to obtain the best value, an approach inspired by 
work of Li et al. (2001). TAEE with threshold adaption is 
shown in Algorithm 2, where Pn_init is the initial power level 
of nodes and ΔPt(n) is the power consumed in time t by 
node n. In Step 3 and Step 5, the ratio _ ( )n initP Pt nΔ gives 
an estimate about how many time slots of t a full-power 
node would live if the power consumption pattern follows 
ΔPt(n) per t time units. Thus, the ratio gives an intuition of 
the node n’s lifetime when the current threshold value th is 
used. When the lifetime is decreasing, the threshold th needs 
to be changed so to remain at an optimal value. 

 
 

Algorithm 2 TAEE with Threshold Adaption 
1 Choose initial threshold th, step δ, and minimum 

Step δmin > 0. 
2 Run the TAEE protocol for a time interval t. 
3 Compute _ ( )n initP Pt nΔ  for each node n, and let the 

minimum one be l1. 
4 Increase th by δ and continue to run TAEE protocol  

for t. 
5 Compute _ ( )n initP Pt nΔ  for each node n, and let the 

minimum one be l2. 
6 If some node depletes its energy, stop. 
7 If l1 < l2, then l1 = l2, goto 4. 

8 If l1 > l2, then 
( )( )
( )( ) 1 2

2, 0
, ,

2, 0
min

min

max if
l l

min if

δ δ δ
δ

δ δ δ

− <⎧⎪= =⎨
− − >⎪⎩

 

goto 4 

Generally, we assume the network has regular traffic 
pattern. That means, there is an optimal th value which 
maximises the network lifetime. However, when traffic 
pattern fluctuates, the minimum step value δmin ensures the 
adaption step of the th does not shrink to too small, thus 
allowing quicker adaption when traffic fluctuation happens. 

The initial step value δ and the interval t are important 
factors for the algorithm and shall be chosen carefully.  
They affect the optimal th value and also the search time.  
A larger δ allows more global heuristic, with the sacrifice of 
convergence time, while a too small δ has the pitfall of being 
trapped at a local maximum. A smaller t value allows faster 
threshold tuning, but the precision is limited by the statistics 
that can be counted in a shorter period of time. A larger t 
allows better observation of the performance trend, but the 
tradeoffs are the prolonged convergence time in which the 
TAEE algorithm has to run with less preferable threshold 
value, and impact brought by the increasing change of global 
traffic distribution over time. In all, the parameters need to be 
chosen wisely according to an overall consideration of traffic 
periodicity, average traffic session time and transmission rate. 
Providing a stable traffic pattern, appropriate initial th and δ, 
the convergence time of th is in the order of ( )21 mint log δ− . 

4 Hierarchical TAEE with dynamic grouping 

In many applications, sensor networks are deployed in  
large scale. A global propagation of residual energy and 
traffic distribution becomes less practical. Also, computation 
overhead of Algorithms 1 and 2 will rise to a higher level. To 
tackle this problem, we follow the traditional hierarchical 
approach. The key issue in such a scheme is how to form  
the hierarchy. Dynamic clustering and geographical based 
partitioning (Heinzelman et al., 2000; Li et al., 2001;  
Xu et al., 2001; Bandyopadhyay and Coyle, 2003; Luo et al., 
2005b; Lin et al., 2006) are most commonly used approaches.  
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The former runs a clustering protocol which incurs 
communication overhead, while the latter may generate 
boundary effect if partitions are formed statically, e.g. nodes 
near the borders tend to exhaust the energy quicker. In our 
work, we use existing geographic location information to 
form random zones dynamically (we call it groups) for a 
hierarchical routing (H-TAEE) which performs TAEE 
protocol locally among nodes inside the random groups. 

The dynamic random grouping proposed here aims to 
tackle the aforementioned boundary problem and the 
calculation overhead. Our routing scheme remains a two-tier 
hierarchy using local groups. Any intermediate packet 
forwarders can determine the approximate directions towards 
the sink at any time. Using the source and the sink IDs 
(hence, their positions), we choose the next group in an  
on-demand fashion for local path selection. 

A group is a sector centred at a local source with the 
angle a and the hop range r. The randomness of the group is 
reflected in its radius r, its angle a and its orientation o 
(shown in Figure 3). Specifically, the local source node 
randomly choose a number r ∈[1, ttl] and uses it as the  
hop range for this group. ttl is a constant indicating  
the maximum hop range. It also chooses a random angle  
a ∈ [a1, a2]. The sector’s central line could orient towards 
the sink directly. We discuss these randomness a little later. 
The next random group (sector) will centre at a node close 
to the arc (called the exit node) so to forward data towards 
the sink. How to select this node is the job of TAEE that 
runs within the current group. 

Figure 3 Dynamic random grouping 

 

Our TAEE algorithm runs over the sensors within the sector 
to find a path from the local source to a node (called exit 
node) bordering this group on the arc with the best energy 
efficiency. To select the exit node, as shown in Figure 3, we 
connect all the candidate exit nodes (the grey nodes) to  
an imaginary virtual sink. The weights of the added edges 
are set to be 0 so the position of the virtual sink is not  
a concern. The TAEE will generate a heuristic energy-
efficient sub-path, as depicted by the bold arrowed lines in 
the figure. The exit node is then the node next to the virtual 

sink on the heuristic sub-path. Starting at this exit node, 
which is the local source of the next group, the next group 
will be formed. 

We observe that the above approach of choosing the 
angle and the central orientation o for the sector could lead 
to heavily using the nodes in the region (its width is 
determined by a) that surrounds the line linking the source 
and the sink (geographical shortest path). However, we are 
not able to use the global topological and traffic load view 
in calculating a fully balanced local path since our goal is to 
solve the scalability problem. Setting a large to form a large 
sector for energy balance could result in large computational 
overhead as well. Below we describe a technique that 
dynamically adjusts the central orientation of the sector to 
alleviate the problem. 

A new central orientation is calculated when the data 
packet is about to exit the current group. At that time, a new 
random group will be formed starting at the current exiting 
node (also the source for the next new group). The new 
central orientation, then, is determined based on formula (3): 

1 2new old s en s sinko o k a k a→ →= + ⋅ + ⋅  (3) 

where s ena →  is the angle regarding to oold from the local 
source node s of the current group to this exit node en, 

s sinka →  is the angle regarding to oold from s to the sink, as 
shown in Figure 4. k1 and k2 are parameters in [0,1]. The 
rule oscillates toward which direction the next group should 
be formed according to two factors. First, it exploits the 
trend of current group’s path selection by the adjustment k1. 

s ena →  which predicts the orientation toward which better 
energy-efficiency could be achieved. A larger k1 allows the 
high tier group-wise path to deviate farther from the 
geographical shortest path. Thus, even with a small a, we 
can achieve better energy balance. Second, it manages to 
converge the orientation toward the sink by adding the 
adjustment 2 .s sinkk a →⋅  This adjustment is important because 
otherwise the route may not reach the intended sink.  
A possible onew and next group (marked by dash-dot line) 
starting at en are shown in Figure 4. 

Figure 4 New central orientation calculation 
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After the message is routed to the exit node in the current 
group, the routing process is performed repeatedly until the 
message reaches the destination. Because of the randomness 
in the group formation, the border node power depletion 
problem is resolved naturally. Also, because the hierarchical 
routing with random grouping dynamically adjusts overall 
orientation according to local energy-efficient path selection 
results, it can make effective prediction, thus accomplishing 
energy efficiency at the global level. 

5 Simulation 

TAEE is evaluated using a custom-built packet-level 
simulator and compared to the MMZ algorithm. Our primary 
evaluation metric is the network lifetime, which is measured 
as the number of messages that are transmitted from all the 
sources during the time period starting from the beginning 
until the first failure of message delivery. When appropriate 
we also evaluate another metric called network capacity, 
which is the number of messages that are transmitted from  
all the sources during the time period starting from the 
beginning until the time that no path can be established for 
any source-sink pairs. In addition, we study the average 
power expenditure per message sent from the source to the 
sink. The overhead of TAEE involves both communication 
and computation overhead. The additional communication 
overhead for TAEE comes from extra TP information 
piggybacked in normal messages propagated in the network. 
The resulting link overhead is limited. The computation 
complexity is dominated by the Floyd-Warshall algorithm  
as mentioned in Section 2. The Floyd-Warshall algorithm  
will take a complexity of Θ (N3), where N is the number of 
nodes. Our hierarchical scheme with dynamic grouping is 
designed to reduce the computation overhead. In addition, 
with the advances of the CPU processing speed, computation 
overhead is less concerned. 

We run simulations in different scenarios where the 
following parameters are varied to show the impact on 
performance: (1) Variance of source transmission rates  
(we assume source sending rate is time-variable). This 
parameter indicates traffic load variation. Varying the 
degree of this variation is useful to evaluate the advantage 
of TAEE in networks with uneven traffic load pattern,  
(2) Number of nodes in the network while fixing the field 
size; (3) Maximum allowed transmission distance between 
two nodes. The value reflects the control of SNR threshold; 
(4) Distance between source and sink. It impacts the degree 
of intervention among all traffic in the network. 

The network area in the simulation is square, 25 × 25 in 
size following the scenario used in early work, and the sensor 
nodes are deployed randomly in the area. Data sinks are 
distributed evenly in the sensor network, with the quantity 
10% of all nodes. The data sinks change every 500 seconds. 
For communication we generate multiple random source-sink 
pairs. Five source-sink sessions are running concurrently  
 
 

at any time. The sessions have the same duration of  
100 seconds, but with different transmission rate. The sending 
interval range indicates the maximum possible sending 
interval for any specific session which starts from 1 and 
selected randomly. 

The equation of power consumption is defined as  
e = 0.001 × d3, where d is the distance between two nodes. 
The initial powers of the sensor nodes are randomly chosen 
from Johnson (1977) and Shnayder et al. (2004). These  
value are selected following the models from related work. 
Both TAEE and MMZ protocols use parameter adaption 
algorithms for automatically adjusting algorithm parameters. 
For TAEE, the threshold value is adapted according to 
Algorithm 2. Except being varied in the experiments or 
otherwise mentioned, the default configurations are set as in 
Table 1. When the source-sink distance is not varied, it is 
random because the source and sink are chosen randomly. All 
simulation results are averaged over simulation passes using 
50 randomisation seeds. 

Table 1 Default parameter configuration 

Num. of Nodes 50 
Trans. Range 20 
E. Update Interval 200 s 
Max Sending Interval 20 s 

Figure 5 serves two purposes. We study the performance gain 
of TAEE over MMZ by showing the lifetime ratio. We also 
investigate the effectiveness of trimming nodes according  
to prospective traffic load (when threshold is adaptive).  
In comparison, we show TAEE with threshold setting to zero 
(no trimming will be performed). The Figure shows the 
impact of traffic sending rate on the above metric. Note that 
the maximum sending interval indicates the upper bound of 
the randomly generated sending interval (starting from 1) of 
source-destination pairs. Thus when X-axis moves right, the 
traffic becomes less even. We set the energy information 
update interval to be 1 for this simulation, which means both 
protocols always get accurate information at any time. From 
the figure, TAEE performs better than MMZ, no matter  
the threshold is adaptive or fixed at 0. This means the cost 
function of TAEE balances total power consumption and 
maximum-minimum power residue very well, thus generates 
better performance. TAEE with adaptive threshold performs 
better than that with zero threshold, indicating the merit of 
exploiting traffic load information. For TAEE with adaptive 
threshold, it is apparent that when the sending interval range 
increases, which directly translates to greater level of traffic 
variation, the trend of network lifetime ratio is increasing near 
steadily. TAEE without traffic awareness (th = 0) generates 
more irregular zigzag performance pattern as it is not directly 
affected by maximum sending interval. At a couple of points, 
it is better than TAEE with awareness due to the randomness 
of the traffic pattern we used. In all, Figure 5 confirms the 
advantage of TAEE in networks with uneven traffic patterns. 
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Figure 5 Impact of traffic variation 
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Figure 6 shows the impact of number of deployed nodes on 
the network lifetime. Apparently, when the number of nodes 
increases, the network life time is extended due to the fact 
that more nodes in the network create more routing path 
choices. Generally TAEE protocol outperforms MMZ,  
but when the number of nodes is small, TAEE and MMZ 
generates similar network lifetime. That is because in a  
very sparse network, the power consumption for sending a 
message between two nodes increases significantly along 
with the distance increase, causing significant reduction  
in number of nodes which can be removed by TAEE. For 
example, when selecting path for source-sink pairs with 
lighter traffic, the node removal (Step 3) often leaves the 
algorithm no choice but still to take the path calculated as 
shortest path, i.e. the benefit of taking traffic load vanishes. 
On the other hand, such a case also leaves TAEE to be more 
sensitive to threshold th, which is more effectively adapted 
using the threshold adaption algorithm. However, MMZ 
tends to let all traffic share the same routing priority no 
matter the traffic session is light or not. 

Figure 6 Impact of number of nodes on lifetime 
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Figure 7 shows the network capacity curves for TAEE and 
MMZ when the number of nodes varies. The two curves are 
very close to each other, indicating that while TAEE has 
slightly higher network capacity most of the time, the 
performance of the two algorithms in network capacity  
is similar. 

Figure 7 Impact of number of nodes on capacity 
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Figures 8 and 9 report average power consumption for 
sending a message from source to sink, from the time of 
traffic generation until the cut-off time for measuring network 
lifetime and network capacity respectively. From the two 
figures, most of the time TAEE has higher per-message 
power expenditure than MMZ, and the difference is 
especially obvious in the lifetime measurement scenario,  
and it is nearly constant when number of nodes varies.  
The additional power consumed by TAEE is due to the 
‘detouring’ mechanism in the TAEE algorithm. When the 
number of nodes is small at 20, in the capacity measurement 
scenario described in Figure 9, MMZ spends more power per 
transmitted message than TAEE. Particularly, compared with 
Figure 8, when the number of nodes is 20, TAEE consumes 
less power while MMZ consumes more. This interesting 
phenomenon indicates that MMZ tends to favour paths with 
less overall power consumption (in addition to its power 
residue ratio considerations), while TAEE puts more weight 
on heuristic according to traffic load. Beyond the time point 
when the network reaches its lifetime, it is increasingly harder 
for TAEE to perform such heuristic by detouring, which 
results in the decreasing of power consumption. 

Figure 8 Power expenditure per message – lifetime 
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Figures 6, 7, 8 and 9 suggest that even though having a cost 
of a small fraction of additional power consumption, TAEE 
achieves longer network lifetime without jeopardising the 
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network capacity. In other words, the design of detouring 
paths off hot spots is proved to be effective. That is to say,  
it achieves energy efficiency by prolonging lifetime through 
load balancing. 

Figure 9 Power expenditure per message – capacity 
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Figures 10 and 11 illustrate the impact of network 
transmission range. In this simulation, there are 80 nodes 
deployed in the network. When the transmission range is 
less than 3, the network is partitioned and no routes can be 
found. When the transmission range increases from 3 to 6, 
the figures show a trend that both TAEE and MMZ increase 
network lifetime and network capacity. The two curves are 
very close because within these ranges, the network is still 
sparse. TAEE has the same drawback as mentioned before 
of not able to effectively utilising the traffic load prediction. 
When the range increases further, the advantage of TAEE 
over MMZ in network lifetime becomes obvious, and the 
network capacity by TAEE shows similar trends. 

Figure 10 Impact of transmission range on lifetime 
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Figures 12 and 13 report the lifetime improvement ratio  
and capacity improvement ratio of TAEE over MMZ  
with varying source-sink distance range stipulated in the 
simulation runs. From Figure 12, the lifetime improvement 
ratio first increases then drops over the increase of distance. 
This is because when the distance is very small, the 
possibility of cross-traffic intervention is low. Along with the 

distance increased to some level, concurrent traffic flows tend 
to intervene with each other more intensively, which allows 
more benefits brought by traffic-aware TAEE protocol. When 
the source-sink distance continues to increase, traffic flows 
are more likely to cross the network area due to long path 
length, which increasingly restricts TAEE to find alternative 
detour paths. Thus the improvement ratio drops. The capacity 
improvement ratio described in Figure 13 follows the same 
trend with lower ratios. 

Figure 11 Impact of transmission range on capacity 
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Figure 12 Impact of source-sink distance on lifetime ratio 
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Figure 13 Impact of source-sink distance on capacity ratio 
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In summary, the simulation shows that our TAEE protocol 
generates better performance through a few mechanisms, 
namely, the cost function emphasising the residual energy 
and additional trim of potentially heavily loaded nodes. The 
load-balancing achieved by detouring paths can effectively 
prolong the network lifetime without jeopardising the 
capacity even with extra energy consumption per message. 

6 Related work 

Many protocols have been developed in recent years  
for energy-efficient communication in sensor networks. 
Generally, these protocols can be classified into categories 
including (1) Least cost path based approaches (Li et al., 
2001; Toh, 2001; Hong et al., 2002; Misra and Banerjee, 
2002; Akkaya and Younis, 2003; Kar et al., 2003; Gao  
and Zhang, 2004; Park and Sahni, 2006), (2) Max-flow 
problem-based approaches (Chang and Tassiulas, 2000; 
Zussman and Segall, 2003; Chang and Tassiulas2004; 
Sadagopan and Krishnamachari, 2004), (3) data fusion and 
network coding approach (Heinzelman et al., 2000; Luo  
et al., 2005a; Ciancio et al., 2006) and (4) topology and 
deployment control based approaches (et al., 2005; Kawadia 
and Kumar, 2005), etc. 

In least cost path-based approaches, existing works 
conduct online path and node selection and construct 
corresponding cost functions according to different criteria.  
A good example is the work presented by Singh et al. (1998), 
which proposes five metrics based on battery power 
consumption at nodes. By using these metrics including 
shortest delay, link quality, location stability, message and 
time overhead in route computation, the proposed protocol 
conducts least-cost routing to prolong the mean time of  
node failure. CMMBCR (Toh, 2001) performs max-lifetime 
heuristic routing using different metrics conditionally 
according to the remaining battery capacity. If there is 
sufficient power, shortest path algorithm is used. If not,  
nodes with the lowest battery capacity are avoided. Li et al. 
(2001) implements a heuristic algorithm Max-min zPmin 
(MMZ) to balance the power-aware metrics of minimum total 
power consumption and maximum minimum-power-residue-
fraction. MRPC (Misra and Banerjee, 2002) and EQR 
(Akkaya and Younis, 2003) consider not only node energy 
level and varied transmission power, but also packet error 
rates when constructing the link cost function. CMAX (Kar  
et al., 2003) maximises the number of messages that can be 
successfully delivered. It uses message admission control to 
bound the worst-case performance. Gao and Zhang (2004) 
combines greedy strategies of sending messages to the 
furthest reachable node-in-direction and to the node with the 
lightest load considering a set of special cases when nodes  
are located in a narrow strip. OML (Park and Sahni, 2006) 
proposes an online energy-aware routing scheme which 
initially discovers a minimum energy path, then prunes the  
 
 
 

network by discouraging the use as relays of the nodes  
whose current energy residue is less than the minimum 
energy residue along the initial minimum energy path. 

Among the above class of schemes, the MMZ (Li et al., 
2001) and OML (Park and Sahni, 2006) are the two 
algorithms with similar approaches in achieving the same 
design goal. MMZ is an integration of two approaches: it 
takes the minimum total power possible to deliver a message 
as Pmin, and relaxes the total power consumption to maximise 
the minimum residual power fraction en route. It does so by 
iterative trial path calculation. In each pass it removes edges 
(direct wireless links) which could potentially result in lower 
power residue ratio at a node than the lowest ratio from the 
previous tentative path. The procedure ends until the total 
power consumption upper bound is reached. By adjusting 
parameters, the algorithm can be reduced to a minimum total 
power consumption path algorithm, or max-min residual 
power algorithm. OML follows the similar design approach 
with MMZ. The difference is that it removes edges which 
could potentially cause the energy level of nodes to drop 
below the minimum energy residue along a pre-calculated 
shortest path. Then, it uses a cost function integrating the 
factors of both potential energy consumption and power 
residue in order to calculate the final path. No parameter 
adaptation is used. Both MMZ and OML perform heuristic 
path determination based on the observation of the network 
status. However, unlike the TAEE algorithm we proposed, 
they only consider the current network status without utilising 
prospective traffic load information. Without any knowledge 
of the data generation and transmission of the sensor nodes, 
the MMZ and OML algorithms are reactive protocols, that 
means they only respond to the current status of the network, 
lacking heuristic according to future network condition. 

Some researchers formulate the energy-efficient problem 
to max-flow problems (Zussman and Segall, 2003; Bogdanov 
et al., 2004; Sadagopan and Krishnamachari, 2004), and 
(Chang and Tassiulas, 2000; Chang and Tassiulas, 2004) 
propose a class of Flow Augmentation (FA) algorithms  
and a flow redirection algorithm. In addition, protocols are 
designed to accomplish energy efficiency from data fusion 
(Heinzelman et al., 2000; Luo et al., 2005a; Ciancio et al., 
2006). 

Load balancing has been used in some existing work as 
well. LEACH (Heinzelman et al., 2000) is a clustering-
based protocol which uses randomised rotation of cluster 
base stations. TTDD (Luo et al., 2005b) employs source 
defined grids when designing a two-tier data dissemination 
protocol which lessens data query flooding overhead. Shah 
and Rabaey (2002) implements energy-aware probabilistic 
forwarding. Kannan et al. (2004) addresses the problem of 
inter-cluster routing between cluster heads by modelling the 
formation of paths using a game theoretic paradigm. Hong 
et al. (2002) uses a multi-path approach. Other approaches 
include energy-aware regional data dissemination (Yu et al., 
2001), on-demand minimum energy routing (Doshi et al.,  
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2002) using energy-aware link cache, usage of directional 
antenna to optimise control traffic and power consumption 
(Chatterjee et al., 2005) and power control protocols  
(Jung and Vaidya, 2005; Kawadia and Kumar, 2005). 

7 Conclusion 

In this paper we developed an energy efficient routing 
protocol for data dissemination in WSNs. The protocol takes 
prospective traffic load information at sensors into account 
when choosing a least cost path, in addition to responding to 
the current network energy usage. By introducing the metric 
of prospective load ratio and trimming nodes from a path 
according to the metric, our scheme is able to proactively 
reserves energy for sensor nodes that have continuing (to the 
future) data flows. We also devised a cost function that puts 
more weight on residual energy level. As a result, the scheme 
prolongs network lifetime by load balancing. Furthermore, 
we proposed a dynamic random grouping approach to run 
with a hierarchical version of TAEE. The random sector-
shaped groups resolve the boundary problem pertained to the 
geographical zone-based grouping schemes. The two-tier 
TAEE reduces computation and control overhead for large 
scale WSNs. Our simulation results confirmed that TAEE 
effectively prolongs the network lifetime without jeopardising 
the capacity even having higher energy consumption per 
message when compared to a leading online energy efficient 
algorithm MMZ. Our future work will further explore the 
potential of TAEE, investigating more parameter choices of 
TAEE and application layer traffic scheduling along with 
performance comparison with more protocols. 
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