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ABSTRACT
There is a potential privacy breach when users access various
location-based social applications on a mobile social network
(MSN), e.g., sharing locations with friends. To preserve lo-
cation privacy, one of the most common methods is to use
a coarse or fake location instead of a user’s exact location.
However, most of these previous approaches only provide
geometric strategies without considering the semantic con-
text of the geographical locations. For example, if a cloaked
region contains a part of a lake, where no boats are allowed,
an adversary can easily prune the cloaked region to a smaller
range covering a user’s actual location.
In this paper, we propose SALS, a semantics-aware lo-

cation sharing framework based on cloaking zone for an
MSN environment. By considering a user’s social relations
and activities which are available in an MSN environment,
SALS does not assume any trustworthy entities, including
strangers, friends or any third parties. As a solution, SALS
enables users to cooperate with each other, in a Peer-to-
Peer (P2P) way, to generate the cloaking zones, which will
be used instead of the actual locations. Different from the
previous cloaking techniques, SALS considers the semantic
location which can influence the distribution probability of
a user’s locations. We also propose metrics for measuring
the quality of the cloaking zone. The evaluation shows that
our method can well defend the semantic-location attack.

Categories and Subject Descriptors
K.4 [Computers and Society]: Public Policy Issues—
Privacy ; C.2.0 [Computer-Communication Networks]:
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1. INTRODUCTION
The rapid evolution of the mobile devices has enabled

the conventional web-based social network, such as Face-
book, with ubiquitous accessibility and location-based fea-
ture which are turning it mobile. On the other hand, native
mobile social networks (MSNs), such as Foursquare, are cre-
ated dedicated to mobile users which can establish mobile
virtual communities to bring individuals with similar inter-
ests together via their smartphones or tablets. As a result,
both of the two trends have motivated the great popular-
ity of MSNs nowadays. Embedded with location-based fea-
tures, MSNs are capable of providing diverse location-based
social applications, e.g., “check in”1, personal life sharing2,
location-based social games3, as well as some traditional
location-based services (LBS) like restaurant recommenda-
tions. While using these applications, mobile users need to
report their locations to the MSN servers timely or to share
locations with their social friends or some strangers.

However, the widespread use of location information also
raises a great concern for preserving location privacy. On
one hand, some advanced location-determining techniques,
e.g., GPS and RFID, can precisely determine one’s position
both indoor and outdoor with an accuracy of about 10 me-
ters which has made it easier for an adversary to disclose
one’s private information. For example, by inferring from

1Provided by Foursquare at https://foursquare.com
2Provided by Path at https://path.com
3Shadow Cities at http://www.shadowcities.com
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a user’s whereabouts, an adversary can precisely determine
the user’s home address. On the other hand, a user’s loca-
tion data, if combined with his profile and social information
which are available on an MSN, may cause even more seri-
ous threats. For example, if a mobile user, whose identity is
available on an MSN, is found to visit a cancer hospital by
his insurance agent, he may have to pay more on his medical
insurance in the next year.
In order to address such problems, some of the previous

work proposed solutions of both pseudonyms and dummy
location sharing [1,2,13]. Other research [8,12,15] designed
policies to control the sharing process as well as the usage of
these location information. We also have many existing spa-
tial cloaking techniques to solve this problem [3,5,6,9,10,14],
which will hide users inside a coarse area to achieve the k-
anonymity protection. A common drawback for all of the
above solutions is that they all assume some trustworthy
entities in their frameworks, e.g., a third party server or
some neighbor mobile users. However, in an MSN environ-
ment, none of these entities can be fully trusted, e.g., the
location server which stores users’ actual locations, a third
party server which manages the dummy-ID pool for users
or the social friends on MSN who may accidentally misuse
the users’ shared locations. Another serious problem is, al-
though there already exist solutions that can defend various
attacks, e.g., social-relation-disclosure attack [2], and solu-
tions which provide different geometric strategies to achieve
good k-anonymity protection, however most of them do not
consider the background knowledge of the geographical con-
text, i.e., the semantic location. A semantic location is a
geographical place with real-life context, e.g., a supermar-
ket or a lake, which can affect the distribution probability
of users’ locations. If an adversary has such knowledge, he
can prune a user’s coarse location into a precise bound and
thus defeat these privacy-preserving solutions.
Our research takes full account of the different types of

privacy attacks in an MSN environment and proposes a
framework of exhaustive location privacy preserving for mo-
bile users, namely SALS. In SALS, we do not trust any
entities in an MSN environment, thus every user never re-
ports the exact location but uses a customized cloaking zone
(CZ) instead. The CZ covers the user himself as well as
some anonymities and achieves the k-anonymity protection.
While generating a CZ, SALS enables mobile users to work
together, in a P2P way, to make the CZ flexible enough to
cover more anonymities inside. Moreover, SALS also con-
siders the semantic location affection and hence adjusts the
shape and area of the CZ in order to avoid covering some
unreachable places. For example, to cover a lake as one part
of the CZ is meaningless because few mobile users appear
on the lake generally. In brief, the major contributions of
our work are summarized as below.

• We propose a privacy preserving framework SALS for
an MSN environment without assuming any trustwor-
thy entities.

• We summarize two main categories of privacy attacks
and describe the main idea for each attack.

• When generating a CZ, we take into account the se-
mantic locations affection. We also specify the metrics
for measuring the quality of a CZ and propose MaxDen
algorithm for generating a CZ.

• Experimental results show that our MaxDen algorithm
has a good performance to defend the semantic-location
attack.

The remaining sections are organized as follows. After
reviewing the related work in Section 2, we analyze the po-
tential threats and summarize the privacy attacks in an MSN
environment in Section 3, and propose our research problem
and the SALS architecture in Section 4, followed by pre-
senting the design of SALS framework in Section 5. We give
the implementation of MaxDen algorithm for generating CZ
in Section 6 with experiments to evaluate the performance
against privacy attacks in Section 7 before concluding the
paper in Section 8.

2. RELATED WORK
For a broad range of techniques proposed for preserving

user locations privacy, we categorize them into three main
classes, i.e., pseudonyms and dummy location technique, pri-
vacy policies technique, and spatial cloaking technique.

As a representative of the pseudonyms and dummy lo-
cation technique, mix-zone [1] enables users to change their
pseudonyms inside a special region where users do not report
locations. However, it is not suitable for an MSN because an
MSN server has to maintain the right social relation for each
user, making the pseudonyms useless. On the other hand,
some work [2, 13] enables users to report dummy locations
to location servers. However, it brings with both extra com-
puting and communicating overheads to generate, transmit
and process these dummy locations.

Some privacy-policies solutions design several policies, e.g.,
strict access control rules and location usage strategies, to
protect users’ privacy when sharing the location informa-
tion [8, 12, 15]. The IETF geopriv working group4 also pro-
vided several protocols and frameworks for the enforcement
of location privacy policies.

Many solutions employ spatial cloaking technique for lo-
cation privacy preserving in which users are hidden inside a
cloaking region to achieve the k-anonymity protection which
means a user can hide inside k − 1 anonymities from which
an attacker cannot distinguish him/her. Some of them are
built on a trust third party architecture [9, 10, 14], whilst
some other of them use a P2P way [3, 5, 6]. All of these
solutions rely on some trust relationships, either the third
parties or other mobile P2P users. However in an MSN en-
vironment, these entities, including the MSN servers as well
as a user’s social relationships, are not always trustworthy.
Moreover, most of these solutions do not consider the seman-
tic location affection. In this paper, our solution follows this
category of technique and tries to solve the trust problem
with the consideration of semantic location affection.

3. THREATS AND ATTACK MODELS
In this section, we present the main location privacy threats

and then describe different types of attacks that an adver-
sary can use to violate a user’s location privacy.

3.1 Potential Threats
Based on the unique characteristic of an MSN environ-

ment, we analyze the potential threats for mobile users.

4Geopriv http://datatracker.ietf.org/wg/geopriv/charter
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Threat 1. The mobile users cannot be trusted. One of the
most important characteristics of an MSN is that we cannot
trust a mobile user only based on his online identity. This
is because there are some malicious attackers who secretly
collecte a victim’s location information or actively attack the
victim. Such an attacker can use a pseudonyms/fake online
identity to pretend to be a normal user or can compromise
some of the victim’s friends’ mobile devices. As a result,
we conclude that the mobile users, no matter strangers or
friends, should never be fully trusted for privacy concern.
Threat 2. The MSN servers or other third parties cannot

be trusted. The fact is that the MSN servers and other third
parties, who provide location-based social applications, have
already record a list of historical location information of each
user. By utilizing various types of data mining techniques,
they can disclose users’ interests and habits, or trace their
trajectories. It is not surprising to see that they trade the
users’ valuable personal information for commercial purpose
or with political motivation. Moreover, the MSN servers
could be compromised by an adversary, leading to further
disclosure of the sensitive information for malicious purpose.

3.2 Attack Models in an MSN Environment
This section summarizes the attack models in an MSN

environment where an adversary can collect data from the
MSN applications to violate a user’s location privacy. In this
paper, we classify all the attacks into two main categories,
namely passive attacks and active attacks.
For the passive attacks, an adversary passively collects

mobile users’ location information and estimates a user’s
location by (1) utilizing the flaw of the user’s location gen-
erating algorithm; (2) utilizing some background knowledge
of the geographical context, i.e., semantic locations; or (3)
utilizing the social relationship information of the user. A
group of attacks for this category are given as follows.
In the semantic-location attack, based on the knowledge of

the geographical location around a victim, an adversary can
take advantage of the semantic location affection to prune
the victim’s coarse location into a precise bound [7]. For
example, the victim creates a cloaking region which covers
a shopping mall inside. However, a malicious attacker, who
is familiar with this area, knows that the shopping mall is
closed at this time so that he can prune the cloaked region
to estimate the victim’s real location.
Due to different strategies of cloaked region generating

algorithms, a victim may have a higher probability to be
located around the center or the boundary of the cloaked
region. Therefore, a center-of-zone attack or a border-of-
zone attack can be used to guess the victim’s exact location
in the given region.
In an MSN environment, where users’ social relationship

is available, an adversary can also initiate a social-relation-
disclosure attack in which a victim’s real location may be
disclosed by his online friends. For example, when visiting
a cancer hospital, Alice stops sharing location information
for privacy concern. However, her accompanying friend Bob
is still sharing locations. Therefore, an adversary who is
aware of the friendship can also disclose Alice’s activity ille-
gitimately.
For the active attacks, an adversary not only collects but

also actively sends malicious messages to a victim in order to
disturb his normal privacy-preserving process. In the region-
probing attack, an adversary may send several fake locations,

Mobile Users

Base Station

WiFi

MSN Server

Internet MSN Server

MSN Server

P2P Network

Figure 1: The system architecture of SALS

which are purposely created, to the victim. Suppose that the
victim has adjusted his cloaked region in order to cover these
fake locations, then the adversary can estimate the victim’s
location based on the change of the cloaked region.

In the location-flooding attack, which is similar to the
Denial-of-Service (DoS) attack, a victim will receive flood-
ing dummy locations, which are sent by an attacker or for-
warded by some innocent users, so that the mobile device
cannot work normally. We also introduce the visual-aid at-
tack in which an adversary can observe the locality directly
or via some security cameras. For example, a user has re-
ported many fake locations around him. However the cam-
eras show that the user is the only person inside that local-
ity and then an attacker can identify him. Furthermore, the
adversary may also compromise the MSN servers or mobile
devices directly. However, due to the page limitation, we
leave addressing these active attacks to future work.

4. SYSTEM MODEL AND PROBLEM STATE-
MENT

In this section, we present our research problem and then
describe the system architecture of SALS.

4.1 Research Problem
Given all these threats and attacks leading to privacy vi-

olation, the research problem of this paper is to design an
efficient and effective framework to enable users to cooper-
ate together to generate customized cloaking zones which are
used for location sharing instead of their actual locations.

Note that the framework should also satisfy the following
requirements. (1) A user does not have to trust any entities
in an MSN environment. (2) The generated CZ should try
to cover more anonymous users inside to achieve better k-
anonymity protection. (3) The generated CZ should also
consider semantic location affection.

4.2 System Architecture
Different from some of the former work such as MobiShare

[13], we do not deploy a location server to store users’ loca-
tion information. Instead, the SALS architecture is similar
to the conventional client-server architecture which is sim-
ple and easy to implement. Figure 1 shows the details of
the architecture. It only consists of two types of entities,
namely mobile users and MSN Servers, and two types of
networks, i.e., the mobile P2P network among mobile users
and the transmission network between users and servers. In
SALS, every mobile user periodically shares his unique CZ
with others via the P2P communication. Based on the re-
ceived CZs from neighbors and the knowledge of semantic
locations, each user can then ameliorate his CZ for better
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Figure 2: The representation of semantic location based on grid map: (a) semantic location feature identifi-
cation; (b) semantic location coefficient values at daytime; (c) semantic location coefficient values at night

privacy protection. When accessing location-based social
applications, these CZs will be used instead of users’ actual
locations.
Mobile users carry mobile devices, e.g., smartphones

and tablets, which have positioning functionality, e.g., GPS,
to allow them accurately determine their geographical po-
sitions. Mobile users can access the Internet via the Wi-
Fi access points or base stations. The Mobile P2P net-
work is a highly ad-hoc network which allows mobile users
to communicate with each other via wireless transmission
protocols, e.g., Bluetooth or IEEE 802.11, or ad hoc net-
work routing protocols, e.g., LANMAR [11]. This network
is self-organized and does not rely on any servers or fixed
communication infrastructure. In SALS, mobile users can
share their CZs with each other by utilizing this network.
MSN Servers are providing various location-based so-

cial applications. These servers manage both the users’ per-
sonal profiles and their social relationships. In this paper,
we assume that these servers are equipped with privacy-
preserving query processing engines [4] which can process
the location-based queries based on coarse locations. The
Transmission network is responsible for transmitting mes-
sages between the mobile users and MSNs. These messages
can be either in plain text or in cipher text which is deter-
mined by the service agreements.

5. DESIGN OF SALS
In this section, we firstly describe the semantic location

affection and then point out the metrics for evaluating the
quality of a CZ.
We transform the real-world map into a discrete grid-

based space which contains m×n grids with equal area. We
refer to this discrete grid-based space as GridMap hence-
forth. Each mobile user is placed into one and only one
grid, identified by a row-column pair (x, y). Since users do
not trust any entities, we enable them to use a cloaking zone
to share with other users or servers, so as to achieve the k-
anonymity protection. The definition of CZ is shown below.

Definition 1. The cloaking zone, denotes as CZ, is a rect-
angle region and can be defined as a 4-tuple record

CZ = (id, t, gul, gbr)

where id indicates the unique ID of a mobile user, t is the
generation time of the zone, and gul and gbr represent the
upper-left and bottom-right grids of the zone which can be
identified by using the coordinates (xul, yul) and (xbr, ybr)
in a 2D Euclidean space respectively.

As an example of the semantic location affection, as shown
in Figure 2(a), theGridMap has five semantic types, namely
road, park, lake, market and residence, which represent the
semantic features of the locations in the real world respec-
tively. For each grid in the GridMap, we assume that it is
small and flexible enough to be assigned to only one seman-
tic feature. For example, the 3 × 4 grids on the upper-left
corner of GridMap are all of semantic feature “Market”. In
practice, a mobile user can assign each type of semantic fea-
ture with a coefficient, denoted as C(location), which can
roughly measure the likelihood that other users may appear
in that semantic location. As shown in Figure 2(b), we have
C(lake) with a relatively small value 0.2 because few people
with mobile devices can appear on a lake except for those
on boats. We also notice that C(market) > C(lake) since
the probability for a user to be located in a market is much
greater than on a lake. Moreover, a mobile user can also ad-
just these coefficients based on some factors, e.g., time and
weather. For example, Figure 2(b) shows the coefficient val-
ues in daytime whilst Figure 2(c) shows these values at night.
So we have C(park) = 0.5 at daytime and C(park) = 0.1
at night, because the background knowledge shows that the
park is closed at night. As aforementioned, the semantic-
location attack can estimate the victim’s real location if he
does not consider the semantic location affection when gen-
erating the CZ.

Deducing from the definition of k-anonymity, we conclude
that the more anonymous users a CZ covers, the better qual-
ity of protection it can provide. Given the semantic location
affection, it is wise for a CZ to carefully choose some grids
to cover based on the probability that users will appear in
that grid. Hence, when user Alice receives a shared CZ from
user Bob, Alice can analyze the probability that Bob may
be located in each grid inside the CZ. From the other side,
it is also the probability that an attacker, when receiving a
CZ, can get about this user at a particular grid g. Thus, we
define this probability value for each grid as follows.

Definition 2. Given a CZ z, and a grid g inside z, i.e.,
g ∈ z, the probability for the user who generates z to be
located at g, denote as p(g, z), can be calculated by

p(g, z) =
C(g)∑

g′∈z C(g′)

where C(g) is the semantic location coefficient of g.

By the definition, if all the grids covered by a CZ are of
the same semantic type, i.e., C(g) are all the same, we can
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Figure 3: An example of semantic location affection:
(a) the show of semantic location coefficient values;
(b) the show of the probability value p(g,z).

conclude that a user’s position follows uniform distribution
over these grids and the values of p(g, z) all equal to 1/N
where N is the number of grids inside the CZ. Otherwise,
the user’s position distribution is nonuniform. For the exam-
ple in Figure 3, the values of semantic location coefficients
are shown in Figure 3(a) from which we know that the lake
is unreachable for users but the market is crowded by users.
Hence, as shown in Figure 3(b), the probability value p(g, z)
for the grids in the lake is 0, whilst the p(g, z) in the mar-
ket area are as large as 12.5% which means the user has a
chance of 12.5% to be located in that grid. Note that the
value of p(g, z) ranges in [0, 1).

Theorem 1. the sum of p(g, z) is 1, i.e.,∑
g∈z

p(g, z) = 1

Proof. Suppose that CZ z consists of n grids, i.e., z =
{g1, g2, ..., gn}. Based on Definition 2, we have∑

g∈z

p(g, z) = p(g1, z) + p(g2, z) + · · ·+ p(gn, z)

=
C(g1)∑

g′∈z

C(g′)
+

C(g2)∑
g′∈z

C(g′)
+ · · ·+ C(gn)∑

g′∈z

C(g′)

=
C(g1) + C(g2) + · · ·+ C(gn)∑

g′∈z

C(g′)

=

∑
g∈z

C(g)∑
g′∈z

C(g′)
= 1

When a user receives several CZs from his P2P neighbors,
these received CZs may overlap with each other. Thus, some
grids may be covered by two or more CZs at the same time
which will increase the probability that a user may appear
in the grid. We refer to this as the total probability value for
a grid g, denoted as P (g), which is the sum of probability
values contributed by each CZ which covers the gird g.

Definition 3. Let Z be a set of CZs, i.e., Z = {z1, z2, ..., zk},
and let all CZs in Z cover the grid g, i.e., g ∈ ∩k

i=1zi. The
total probability for a user to appear in grid g, denote as
P (g), can be calculated as

P (g) =

k∑
i=1

p(g, zi), where g ∈ zi

Generally speaking, a CZ with a larger area (contain-
ing more grids) is more likely to cover more anonymous
users thus to achieve a better k-anonymity protection. How-
ever, a large CZ also brings several disadvantages. First, a
large CZ always indicates low-accuracy location information
which will result in low quality of service (QoS). Second, it
may cause more communication overhead between users and
MSN servers because of the inaccurate locations. Third, to
generate a large CZ, a user may need more time and com-
puting resource. Hence, when generating a CZ, it is wise for
a CZ to cover some grids with large P (g) value whilst still
remaining acceptable size. Therefore, in order to balance
the privacy effect against QoS, we defines the Zone Density
of CZ as a trade-off metrics.

Definition 4. Given a user’s own CZ, denoted as z, and a
grid g inside the CZ, i.e.,g ∈ z. We measure the quality of z
based on the density of anonymous users inside z, denoted
as Den(z), which is defined as follows

Den(z) =
1 +

∑
g∈z P (g)

N(z)

where N(z) represents the total number of grids inside z
which also indicates the area of z.

According to the definition of CZ, N(z) can be calculated
by the following formula

N(z) = |xul − xbr| × |yul − ybr|

where (xul, yul) and (xbr, ybr) are the coordinates of the
upper-left and bottom-right grids of CZ z.

In this paper, we consider both the CZ’s area and the
covering number of anonymities of the CZ. Hence, we utilize
Den(z) as a metric to balance the privacy protection (num-
ber of anonymities) against QoS effect (CZ’s area). The goal
of our algorithm, namely MaxDen algorithm, for generating
CZ is to find a CZ with maximal possible value of Den(z).

6. IMPLEMENTATION OF SALS
This section firstly gives the overview of SALS, and then

shows MaxDen algorithm in detail.

6.1 Overview of the Algorithm
The basic process for generating a user’s CZ can be carried

out by three phases. Figure 4 shows an example of the pro-
cess. From Figure 4(a), we have six mobile users m1,m2, ...,
and m6 in a 15 × 15 GridMap which contains five types of
semantic locations. The following steps show how user m1

generates his CZ.
Firstly, via the P2P communication technique, user m1

will receive other five neighbors’ shared location information,
i.e., five different CZs as shown in Figure 4(b). This phase
can be run in several modes, i.e., on-demand, proactive, or
dual-active modes [3, 5].

Next, based on these received CZs, user m1 calculates the
P (g) value for each grid around him, as shown in Figure
4(c)5. The larger value a grid has, the more likely users may
appear in that grid.

Finally, based on these grid values, we then generate m1’s
own CZ by using MaxDen algorithm. Figure 4(d) gives an
example of the generated CZ. The CZ is then shared with
other mobile users.
5The blank grids have values of 0.
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Figure 4: An example to represent the basic process for CZ generating.

6.2 MaxDen Algorithms
In this part, we describe MaxDen algorithm for generat-

ing CZ in detail. This algorithm can guarantee to generate
a CZ with the largest possible Den(z) value under a user’s
specified area constraints. In practice, each user may have
different requirements on the CZ’s area which is defined in
user’s privacy profile. For example, they can control the area
of the CZ by defining the parameters Smax and Smin which
are the maximal and minimal acceptable areas of CZ. The
main idea of MaxDen algorithm is to enumerate all the pos-
sible CZs under the given area limitation so as to select the
one with the greatest Den(z). Hence, our algorithm guaran-
tees to output the best result for every scenario. Algorithm 1
shows the pseudo code of MaxDen algorithm.

6.3 Security Analysis of SALS
As mentioned in Section 2, an adversary can take either

active or passive attack to violate a user’s location privacy.
Since most of the previous spatial cloaking solutions can-
not defend the semantic-location attack, our SALS, how-
ever, considers the semantic location affection by assigning
each type of semantic locations with different coefficients
C(location). By using these coefficients, the distribution
of users’ locations is no longer uniform but follows the real
world’s semantic location context. By calculating the prob-
ability of users appearing in one grid, we can adjust the CZ’s
shape and position so as to avoid covering those grids that

Algorithm 1: MaxDen Algorithm

Input: Z: a set of CZs, (Smin, Smax)
Output: z

1 Define:
2 gul = upper left grid of z;
3 gbr = bottom right grid of z;
4 gu = the grid which covers the user ;
5 maxDen = record the max Den(z);

6 Calculate P (g) for each grid based on Z;
7 foreach possible zone z′ in the GridMap do
8 if z′ does not contain the gu then
9 continue;

10 else if N(z′) < Smin or N(z′) > Smax then
11 continue;
12 calculate the Den(z′);
13 if Den(z′) > maxDen then
14 gul = upper left grid of z′;
15 gbr = bottom right grid of z′;
16 maxDen = Den(z′);

17 end

18 end
19 return z = (id, systemtime, gul, gbr);
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Figure 5: A part of the map of Hangzhou and its
GridMap with semantic location context.
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Figure 6: Comparison of Den(z) against user num-
ber.

are hard to reach. Since all users follow this generating rule,
their CZs are apt to cover some crowded semantic locations
after several rounds of generating process. Therefore, it is
impossible for an attacker to initiate a semantic-location at-
tack on a user’s CZ by pruning as many grids as before to
narrow down the user’s real location range because most
of the grids inside the CZ have large and almost similar
C(location) values.
The key point for a successful social-relation-disclosure at-

tack lies on the social-relation knowledge that an attacker
has gathered. Based on these knowledge, an attacker can
reveal a victim’s real location by relating to his friends’ lo-
cations. In an MSN environment, since these knowledge are
public online, an attacker cannot be prevented from gather-
ing a victim’s social relationships. However, our SALS can
defend this attack to a certain degree even if the attacker
has known the location information of the victim’s friends.
This is because the CZs shared by everyone are blurred so
that the attacker can mine few knowledge from the CZs
but only some vague information. The center-of-zone attack
and border-of-zone attack are effective for those algorithms
of which the generated CZs often contain the users at the
center or boundary of the CZs. Because the goal of MaxDen
algorithm is to achieve the largest possible Den(z) value,
it will not directly affect a user’s position in the CZ. As
aforementioned, SALS is not designed to defend the active
attacks, e.g., region-probing attack and location-flooding at-
tack. In the future work, we can introduce some message-
filtering strategies to reject these malicious messages.

7. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the Max-

Den algorithm from the following three aspects, (1) average
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Figure 7: Comparison of CZ’s area against user
number.

Table 1: The performance against semantic-location
attack

Semantic Type Covering probability Area ratio
Road 78.2% 11.3%
Park 36.6% 14.2%
Lake 2.6% 0.4%

Shopping Mall 88.4% 45.4%
Residence 48.8% 28.7%

Den(z) value, (2) average area of CZ, and (3) the defending
efficiency against semantic-location attack. For the experi-
mental setup, we choose a part of the map of Hangzhou City
in China as the semantic location background, as shown in
Figure 5(a). We build up a 50× 50 GridMap in which each
grid is a square with an area of 10 × 10 m2. The semantic
context of each grid and the semantic location coefficients
are shown in Figure 5(b). The number of simulated mobile
users inside the GridMap increases from 100 to 500 for dif-
ferent scenarios. The area constraint for each CZ is [64, 400]
grids. The testbed is implemented by Java and run on a PC
with Intel Core 2 Quad CPU at 2.4GHz and 1.96GB RAM.

Figure 6 shows that the value of Den(z) grows steadily
with the increase of user number in the given GridMap, i.e.,
from 100 to 500. This is because the overall user density of
the GridMap is increasing, so is the Den(z) value of the
CZ. From Figure 7 we can also observe that the size of CZ
is growing with the user number. This is because with more
users in the GridMap, some small regions in the GridMap
will have high user density. Therefore, the CZs whose areas
are relatively small are tend to expand their areas to cover
these high density regions. As a result, the average size of
CZs will increase steadily.

For defending the semantic-location attack, the key is to
stop attackers from pruning the CZ’s area which also means
that there should not exist many grids in the CZ whose
C(location) values are relatively small. Thus, a well gener-
ated CZ is the one in which most of the grids’ C(location)
values are about the same. In this experiment, we run 500
times of simulation, and calculate the average probability of
each type of semantic locations being covered by the gen-
erated CZ, and the mean ratio of the area of each type of
semantic locations versus the CZ area. In Table 1, the re-
sults show that 88.4% of the CZs cover at least one grid with
the semantic type of Shopping Mall, whereas only 2.6% of
the CZs cover the semantic type of Lake. Moreover, the area
of girds of Shopping Mall takes up as many as 45.4% of the
total area of CZ, however, the Lake only takes up 0.4% of the
total area. Therefore, the result verifies that our algorithm
can effectively prevent the semantic-location attack.
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8. CONCLUSION
In this paper, we have proposed SALS, a semantics-aware

location sharing framework based on cloaking zone, for pre-
serving mobile users’ location privacy in a mobile social net-
work environment. In summary, we have made the following
contributions. (1) We have considered the unique character-
istic of an MSN environment without assuming any trust-
worthy entities. As a result, we have enabled users to share
CZs rather than their exact locations to any entities. (2)
We have taken into account the semantic locations affection
when generating a CZ. (3) We have summarized a set of pri-
vacy attacks and also evaluated our algorithm against these
attacks. The results have shown that our algorithm can well
defend the semantic-location attack. In respect to the future
work, we plan to conduct our experiments in a real applica-
tion environment. We also plan to investigate the solutions
against active attacks.
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