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Vehicle to Vehicle (V2V) communication provides a flexible and real-time information dissemination
mechanism through various applications of Intelligent Transportation Systems (ITS). Achieving seamless
connectivity through multi-hop vehicular communication with sparse network is a challenging issue. In
this paper, we have studied this multi-hop vehicular connectivity in an urban scenario using GPS traces
obtained from San Francisco Yellow cabs. Our current work describes a new algorithm for the analysis
of topological properties like connectivity and partitions for any kind of vehicular or mobile computing
environment. The novel approach uses bitwise manipulation of sparse matrix with an efficient storage
technique for determining multi-hop connectivity. The computation mechanism can be further scaled to
parallel processing environment. The main contribution of this research is threefold. First, developing
an efficient algorithm to quantify multi-hop connectivity with the aid of bitwise manipulation of sparse
matrix. Second, investigating the time varying nature of multi-hop vehicular connectivity and dynamic
network partitioning of the topology. Third, deriving a mathematical model for calculating message
propagation rate in an urban environment.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Over the past few years, connectivity in Vehicular Ad hoc Net-
work (VANET) has been investigated by the researchers in different
forms. One of the most common form of analysis is based on
probabilistic modeling where some sort of simplified assumptions
are made regarding the vehicular mobility pattern to determine
the expected number of connected or reachable neighbors. This
kind of analytical models show some properties of connectivity re-
lated to the overall traffic distribution and node density. Another
type of analysis results from analyzing traces obtained from so-
phisticated vehicular traffic simulators where the robustness factor
depends on the granularity of the microscopic mobility features.
But still, this kind of microscopic mobility simulators fail even to
capture the spatio-temporal variation of actual urban traffic. For
this purpose, researchers are now more inclined towards utilizing
real GPS trajectories from probe vehicles to capture the spatio-
temporal characteristics of urban mobility patterns. But, problems
still exist in this approach when the total number of probe ve-
hicles are too small to be scaled to represent the mass traffic.
However, if the number of probe vehicles is sufficiently large, for
example if the entire fleet of public transportation or taxi cabs
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are within the monitoring scope, this can essentially resemble the
spatio-temporal features of the real time mass traffic. In addition,
the calculations of vehicular connectivity entail complex computa-
tion using chain matrix multiplications. For example, every single
moment the positions of the nodes change and form a new topol-
ogy resulting into a different adjacency matrix. Existing algorithms
for determining broadcast propagation rate in a vehicular network
only account for connected network. In order to estimate mes-
sage dissemination delay beyond the connected component using
a store and forward mechanism, the algorithm needs to keep track
of the changes in network partition due to the mobility of the ve-
hicular nodes. This requires a more sophisticated algorithm that
is capable to keep track of the newly connected nodes at every
distinct time slot. From this perspective, ours is the first attempt
to develop a new analytical approach and computational method
for vehicular connectivity analysis using Boolean Matrix Multipli-
cation.

On the other hand, Boolean Matrix Multiplication (BMM) has
long been a topic of interest among the theoretical computer sci-
entists. While researchers [28–30] have been trying to utilize BMM
to determine transitive closure of a network since early seventies
of the last century, not much effort has been put on leveraging
the techniques of sparse matrix multiplication with BMM. As from
practical sense, most vehicular ad hoc networks are sparse.

Hence, using dense matrix multiplication algorithms to deter-
mine connected components or transitive closures is obviously
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inefficient. Our algorithm, apart from utilizing the techniques of
sparse matrix multiplication, also considers an incremental ap-
proach for chain multiplication. This reduces the overall computa-
tional complexity for determining the transitive closure. Moreover,
we reduce the storage cost by allocating only a single bit per each
matrix element and increase the computational efficiency by in-
corporating bitwise operations on blocks of bits. We named this
algorithm a Boolean Chain Matrix Multiplication (BCMM). From the
perspective of vehicular communication and wireless networking,
this is by far the first algorithm of this kind for analyzing multi-
hop connectivity and network partitions.

It can be envisioned that in near future, enterprise business ap-
plications or commercial applications might be developed on top
of DSRC platform targeting a particular class of vehicles in a spe-
cific geographical terrain. For example, a taxi cab company may use
an internal fleetwide business application using V2V communica-
tion platform. Other examples of this type of selective multicast
applications include commercial applications targeting vehicles of
specific manufacturer or government entities trying to draw atten-
tion of a specific class of travelers, etc. Irrespective of the appli-
cation scope, we present an efficient algorithm to determine the
multi-hop connectivity within a large fleet of moving vehicles in
a metropolitan area. We also described how this algorithm can be
used to determine the network partitioning and broadcast prop-
agation rate in a mobile taxi network. Our analysis results were
based on live GPS traces obtained from the fleet of San Francisco
yellow cabs [1]. The trajectories were made available through the
Cabspotting project [3], a remarkable initiative of San Francisco
Exploratorium [2]. The Cabspotting project is intended as a frame-
work to help use the movement activity of commercial cabs to
explore the economic, social, political and cultural issues that are
revealed by the realistic GPS traces. Our analysis dealt with the
entire fleet of 536 cabs generating over 10 million mobility traces
within a period of one month. Our previous work [23] using these
archived datasets showed interesting factors about taxi cab mobil-
ity, trip pattern, passenger hotspots, drivers empty cruise time and
some basic analysis of data communication.

On the whole, majority of the prior researches on connectiv-
ity and partitioning were based on probabilistic modeling and
simulating with mobility traces generated by well known traffic
simulators, without using any real probe data or GPS traces. This
makes our work different from all previous analysis. We also in-
troduced the notion of saturated connectivity and a mathematical
model to derive the message propagation rate in such a dynamic
network. Our current work describes a complete method and step
by step algorithm for the computation of topological characteris-
tics in a highly dynamic environment. Moreover, ours is by far
the first approach for determining multi-hop connectivity using
sparse binary matrix manipulation with an efficient storage and
computation mechanism. It has been already established by the re-
searchers that the vehicular network can also act as a special form
of Delay Tolerant Network (DTN) where information can be stored
temporarily and forwarded as soon as a previously isolated node
becomes reachable from a broadcasting node. Hence, in this way
an emergency notification regarding traffic accidents or detour can
be propagated throughout the entire urban metropoltan area. Here
we investigated the propagation rate of such emergency messages
within a taxi fleet covering a metro area. In addition, we also in-
vestigated the spatio-temporal behavior of network partitions and
connectivity. The main contribution of this research is two fold.
First, developing an efficient algorithm to quantify multi-hop con-
nectivity with the aid of bitwise manipulation of sparse matrix.
Second, investigating the time varying nature of multi-hop vehicu-
lar connectivity, dynamic network partitioning and message prop-
agation in an urban environment. To the best of our knowledge,
this is also the first approach to develop an efficient algorithm of
this kind which can be further scaled to parallel processing envi-
ronment for performance improvement.

The subsequent sections are organized as follows: we discuss
related work in Section 2, followed by our system model and data
collection methodology in Section 3. Section 5 presents the steps of
the proposed BCMM algorithm preceeded by pre-processing of raw
data in Section 4 and followed by applications of this algorithm in
Section 7. Section 8 describes the details of results and analyses on
vehicle connectivity and partitioning of the mobile nodes. Finally,
we conclude in Section 9.

2. Related work

Several researchers came up with various algorithms and im-
plementations of BMM [27–33]. Some of the recent researchers
[27,34,35] introduced quantum computing based algorithm for
BMM while some others [32,33,36] followed combinatorial algo-
rithm. However, quantum computing is not implemented yet and
still far from reality. The best combinatorial algorithm [36] so far
gives the complexity of BMM bounded by O ( n3

log2.25(n)
). Fischer and

Meyer [28] theoretically showed that the upper bound of compu-
tational complexity for calculating transitive closure using BMM is
O (nα.P (n)) where α = log2 7 and P (n) is the number of bitwise
operations needed. However, this algorithm is based on dense ma-
trix multiplication and do not consider the sparseness of adjacency
matrix for real network. Our BCMM algorithm is an incremental
approach of computing chain multiplications of adjacency matrix
to generate the transitive closure and multi-hop connectivity in a
dynamic vehicular network.

Even though vehicular connectivity problem is an interesting
topic for the VANET research community, but not much work has
been done from the perspective of analyzing network partition-
ing and multi-hop reachability using real world traces. However,
several analytical models have been developed using traffic sim-
ulators that shows the relationship between transmission range
and node connectivity. Ukkusuri and Du [16] derived an analytical
lower bound of average reachable nodes to maintain high connec-
tivity, obtaining a relationship between the total node size and
average number of reachable nodes. However, their analysis was
based on a particular segment of freeway using data obtained from
MITSIMlab, which is a traffic simulation framework. In our cur-
rent work, we also derived the average number of reachable nodes
from each node with an additional constraint added on the for-
warding delay which includes the queueing, storing, transmission
and propagation delay in each hop. Our traces are obtained from
GPS trajectories of San Francisco Yellow Cabs covering the entire
metropolitan area.

Ho et al. [20] utilized the Groovenet traffic simulator to gener-
ate traces of structured mobility and provided an analytical frame-
work to investigate the k-hop connectivity in vehicular network.
The authors also demonstrated the impacts of macro and micro
mobility features on k-hop connectivity. They defined some useful
metrics to evaluate the node connectivity in vehicular networks.

Fiore and Harri [22] studied the effects of node mobility on the
topology of a vehicular network through comparative analysis be-
tween some of the well known stochastic and traffic stream mobil-
ity models. Their research dealt with the duration of peer-to-peer
wireless links, node degree, number of partitions or connected
components, average partition size, etc., in different kind of mo-
bility. It is worth to mention that, our analysis also encompasses
most these metrics but using real GPS traces instead of software
generated trajectories.

Ferreira et al. [17] developed a framework named ‘DIVERT’ for
large-scale traffic simulation and computation of node connectiv-
ity in vehicular sensor network. Using the DIVERT framework, the
authors have demonstrated the temporal evolution of the average
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degree of connectivity and presented an algorithm for computing
the transitive closure to identify a connected component within
the network. Their results from simulation traces show the same
kind of trends that we obtained from our analysis on real traces,
except that we had a very detailed picture of the connectivity
evolution through hop-by-hop exploration. Also, our algorithm of
generating the transitive closure and multihop connectivity is more
efficient then theirs in terms of space-time complexity. Many re-
searchers [18,19,21] also studied the variation of connectivity and
component size (partition size) with respect to change of trans-
mission range. Some of them [19] derived analytical models for
connectivity simulating with CORSIM or other traffic simulators.

On the other hand, using real GPS traces, several interesting
properties related to taxi mobility pattern has been investigated
by the researchers. Most of these studies are based on analyz-
ing archived traces from different taxi cab companies to explore
hidden characteristics of urban mobility models. Some of these re-
searchers tend to reveal new mobility models, taxi trips and usage
pattern, etc., while others focus on clustering and hot spot identi-
fication.

Our previous work [23–26] based on the Cabspotting project
described some statistical aspects of taxi mobility and trip patterns
including instantaneous speed and directions, frequency of pickup
and dropoff, distribution of hotspots, driver’s empty cruise time,
etc. Piorkowski et al. [6] utilized the Cabspotting data archived
over a month to propose a parsimonious mobility model called
Heterogeneous Random Walk (HRW) which captures some of the
important mobility characteristics observed from the macroscopic
level. A key feature of the model is that nodes follow independent
and statistically equivalent mobility patterns, despite the presence
of long-term clusters. They also evaluate the predictive power of
the HRW model in the context of epidemic dissemination, which
is one of the most prominent paradigms for routing in DTNs. Their
work motivates the vehicular networking community to deeply in-
vestigate the taxi mobility traces for further research.

Shin and Park [5] used real-life location tracking data collected
from the Taxi Telematics system developed in Jeju, Korea. Their
analysis aimed at obtaining meaningful moving patterns of taxi
cabs. They have extracted some interesting statistical factors such
as taxi’s driving type, driving time, driving area, pickup rate, trip
duration, taxi usage ratio, service area and time, etc. Lee [4] ana-
lyzed a pick-up pattern of taxi service in the same geographical
area aiming at clustering the pickup and drop off locations to
develop a location recommendation service for empty taxis. The
same author in another paper [6] analyzed both spatial and tempo-
ral statistics of taxi’s waiting spots from the movement history. The
authors also proposed an analysis framework or data model for
taxi telematics system [14]. Again, Yang Yue et al. [13] described
a deterministic single-linkage clustering algorithm and studied the
spatio-temporal distribution of the taxi hotspots and travel interac-
tions between these clusters. Their analysis resulted from as many
as 596 044 traces from the taxi cabs of Wuhan, China.

Cheng and Qu [15] proposed a service choice model for op-
timizing taxi service by reducing waiting time and maximizing
revenue. Their analyses was done with the GPS traces of Singapore
based taxi cabs. Bin Li et al. [11] explored a comparative analy-
ses of different passenger-finding strategies using machine learning
approach. Their work was based on more than two million traces
generated by about five thousand taxi cabs of Hangzhou, one of
largest cities of China. An interesting taxi mobility model has been
proposed by Hongyu Huang et al. [12] using the GPS traces of more
than 4000 taxis of Shanghai. The mobility model, named as META,
considers the following parameters: turn probability, road section
speed and travel pattern. The model generated traces were vali-
dated by real world traces and comparisons were made between
two trace sets in terms of various features. These works provide
an insight to the possible dimensions of utilizing location tracking
data for the purpose of taxi industry.

3. System model and data collection

The Cabspotting project tracks San Francisco’s taxi cabs as they
travel throughout the Bay Area. The data is transmitted from each
cab to a central receiving station once in every minute, and then
delivered in real-time to dispatch computers via a central server.
This system broadcasts the cab call number, location and whether
the cab currently has a fare. The cab locations are not stored by
Yellow Cab, but only used in real-time to aid dispatch. Cabspotting
server communicates to the Yellow Cab server and stores the data
in a database, encoding the call number for privacy. The patterns
traced by each cab create a living and always-changing map of city
life. This project is intended for researchers to explore these issues
in the form of a small experiment, investigation or observation.
One of the most important component of this project is the API
[7] that allows real time tracking information of individual cabs.
Two other mentionable applications belonging to this project is
the CabTracker [8] which averages the last four hours of cab routes
into a map and the Time Lapse [9] which reveals time-varying pat-
terns such as rush hour, traffic jams, holidays and unusual events.

3.1. Trace record

Each mobility trace record contains the following fields:

(1) Latitude & Longitude: Two floating point values of the current
GPS position of the cab.

(2) Occupancy status: A binary value indicating the passenger oc-
cupancy status. A value of 0 indicates that the cab is free while
1 means hired by passenger.

(3) Timestamp: Unix timestamp of the trace reception time.

3.2. Accumulation of trace records

Using the API we accumulated real time traces of these cabs
over a time frame of more than 24 hours starting from July 17,
2011 11:01:09 PM to July 18, 2011 11:57:08 PM. A total of 2063
trace records was captured within this time frame. We also col-
lected previously archived data for a period one month from
CRAWDAD [10] that was acquired though the same procedure. The
archived records summed up to a total of more than 10 million
traces organized in individual ASCII files for each of the 536 li-
censed yellow cabs. These trace files were simulated using our
own developed application. We analyzed the traces both from the
perspective of a single cab as well as from the perspective of the
whole fleet.

3.3. Calculation of geographical distance

Previous work with GPS trace data and distances mostly consid-
ered Euclidian distance between two points. However, this calcu-
lation completely ignores the fact that the earth is round yielding
incorrect results. The difference between Euclidian distance and a
correct approach can be described in Fig. 1. According to the Eu-
clidian distance, the distance between two points P1 and P2 would
be equal to the cord P1P2, whereas the actual distance would be
along the circular arc.

Fig. 1. Euclidian distance vs. actual geographical distance.
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In our prior work [23] we investigated two algorithms, namely,
the Spherical Law of Cosines and Equi-rectangular approximation,
in calculating a geographical distance between two trace locations.
Our implementations and usage of the two schemes suggested
that, for more accurate precision level, the spherical cosine is bet-
ter than the Equi-rectangular approximation. But for faster system
performance the latter is preferred. In our current mathematical
analysis, we used the latter in case of averaging one month’s data
for all the cabs, which contained over 10 million records. While
working with traces over 24 hour time span we used Spherical
Cosine Law to get an accuracy level of less than one meter.

3.4. Degree of connectivity

We define the Degree of Connectivity (DoC) as the total num-
ber of nodes reachable from a particular node via any wireless
path not longer than a given number(k) of hops. The Average De-
gree of Connectivity (ADoC) is the metric that characterizes the
reachability of any random node with the network. Mathemati-
cally, ADoC specifies the average number of reachable nodes from
a single source within a given path length. Hence, ADoC of a ve-
hicular network with n nodes is defined by,

ADoC =
∑n

i=0 DoC

n
(1)

3.5. Network partition

We define the Network Partition as a connected component
where any node can communicate with another node in the com-
ponent through multi-hop communication. In other words, we can
say that, there exists at least one path from any particular node
to each of the other nodes within a partition or connected compo-
nent. Obviously, the path length can never exceed the total number
of nodes in that component. The size of the partition is determined
by number of nodes in that partition. If the entire topology is con-
nected, we get only one partition within the network. On the other
hand, if any node is totally isolated from other nodes, this will be a
partition of size one. Less number of partitions will lead to better
connectivity and information dissemination.

3.6. Data structure for storing matrices

All the computations are done through manipulation of n-by-n
matrices where n is the total number of mobile nodes in a
metropolitan area. For simplification, we assume that the propa-
gation delay for a single hop wireless broadcast is same for all
nodes, given a specific transmission range. Hence we are only con-
cerned with the degree of connectivity for each node instead of the
actual physical distance between the nodes. The physical distance
is only used to generate the adjacency matrix of the network by
comparing with the transmission range. As the maximum trans-
mission range for DSRC is 1000 m, most of the nodes have only
a few neighbors directly connected through single hop communi-
cation. Hence, the adjacency matrix is basically a sparse boolean
matrix. In order to reduce the complexity of the manipulation of
large sparse matrices we use special data structures for storing the
matrix. As we have only binary values as the matrix elements, we
use string of n bits to store a row of a matrix as each row has n el-
ements. We divide the rows into �n/b� blocks where b is the size
of each block. Normally the block size can be specified according to
the processor architecture, that is, for a 64-bit computer the block
size can be 64. We also keep track of the Non-zero Blocks using
linked lists for each row. By the term Non-zero Blocks we refer to
those blocks in a row which has at least one of the b bits set to 1.
This helps us reduce unnecessary operation on the zero blocks.
Fig. 2 shows a sample matrix with the non-zero blocks shaded.
Fig. 2. Data structure of storing sparse matrix.

4. Preprocessing raw data

For any spatio-temporal analysis using GPS traces, one of the
major steps involves preprocessing raw data and filtering out
bad/invalid data. We developed our own strategy for interpolat-
ing and filtering the traces. Below we describe in brief how we
preprocess the data for analysis.

4.1. Processing raw input

First, we process the input raw trace files into a data struc-
ture containing all node information. The GPS traces are organized
into a set of ASCII text files, where each file corresponds to a sin-
gle taxi cab. Each file contains different number of trace records
with variable sampling frequency of broadcasting GPS data to the
central repository. Each trace record comprises of several fields of
data separated by a delimiter. The function Get_Input(Trace file di-
rectory) extracts each individual record from the directory of trace
files and stores them into a data structure of nodes, where each
node represents a taxi cab.

4.2. Determining node position vector

Next, we calculate the node positions for a given timestamp
from the data structure using interpolation method. This step cal-
culates the individual geographical positions (Latitude, Longitude)
of each node for a specific time of interest. As the nodes generate
traces randomly with an average sampling rate of around 30 sec-
onds or less, we use a method of interpolating the closest samples
to find the approximate position of the node at the specific time of
experiment. We check for the samples one minute backward and
forward and depending on the available samples we take the av-
erage of different interpolated and extrapolated values. Below we
mention the possible different cases:

Case 1: In case, two samples are available during the total in-
terval of 2 minutes, as shown in Fig. 3 and 4, we compute the
interpolated (if two sample points are located in opposite side of
the experimental timestamp) or extrapolated (if two sample points
are located in same side of the experimental timestamp) position
using the below formula:

Fig. 3. Interpolation of two sample points.

Fig. 4. Extrapolation of two sample points.
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Fig. 5. Calculating average position from more than two sample points.

x = x2 − x1

t2 − t1
t − t1 (2)

y = y2 − y1

t2 − t1
t − t1 (3)

Case 2: If more than 2 samples are available within the inter-
val (Fig. 5), we calculate the average of the different interpola-
tion/extrapolation position acquired from several pairs of points.
For example, in the above scenario where we have three consecu-
tive points P1, P2 and P3, we calculate the position of P by:

(1) interpolating P1 and P3;
(2) interpolating P2 and P3, and
(3) extrapolating P1 and P2.

Finally we take the average of the three values to minimize the
error probability in the approximation.

Case 3: In case, less than two samples are available during the
total interval of 2 minutes, we extend the sample searching inter-
val in either or both direction to get at least one sample point in
either direction from the experimental timestamp t .

5. Proposed algorithm

This section describes the proposed algorithm for multihop
connectivity analysis. First we describe the steps required for com-
puting the Degree of Connectivity. Then we demonstrate the steps
using an example matrix.

5.1. Determining multi-hop degree of connectivity

The major steps involved in computing the k-hop Degree of
Connectivity are as follows:

(1) Generate adjacency matrix from the node position vector for
a specific transmission range. The Adjacency Matrix is defined
as M = AdjMatrix(L,TX_Range);

(2) Determine the k-hop reachability matrix Mk from adjacency
matrix M . It is in fact the k-hop Transitive Closure calculated
as Mk = ∏k

j=1 M j ;
(3) Compute the k-hop degree of connectivity (k-hop reachability)

DoCk from Mk . DoCk for node i, (DoCi)
k = ∑|V |

j=1 Mk(i, j) − 1.

Below we elaborate each of these steps.

5.1.1. Building the adjacency matrix
In this step, we determine the adjacency matrix of the nodes

from the node position vector and a specified transmission range.
For our analysis of determining the k-hop reachability, we just con-
sider the connectivity issue ignoring the actual physical distance as
we are not determining the best routing path between two nodes;
rather we are determining the existence of a path between two
nodes. Hence we only manipulate a binary matrix in each of the
step henceforth. Fig. 6 describes the algorithm for determining the
binary adjacent matrix. From the algorithm, we can see the loop
executes n(n−1)

2 times. Hence, the time complexity of determining
the adjacency matrix is O (|V |2). While calculating the geographi-
cal distance between two node-positions, we consider the spheri-
cal cosine law which gives an accuracy within 1 meter. Also, as we
are considering undirected graph, so M[i][ j] = M[ j][i].
Fig. 6. Algorithm for determining adjacent matrix.

Fig. 7. Multiplying M with Mk−1 to compute Mk .

Fig. 8. Algorithm for bitwise matrix multiplication.

5.1.2. Determining the k-hop reachability matrix
Fig. 7 depicts the process of calculating the k-hop reachabil-

ity matrix, Mk = ∏k
j=1 M j . For each of the matrix multiplications,

normally it would require O (V 3) operations. So for k − 1 multi-
plications required to determine Mk , in the worst case it would
require O (kV 3). But our BCMM algorithm reduces the number of
operation in several steps that can minimize the average complex-
ity from typical matrix multiplication. The pseudocode of BCMM
algorithm is shown in Fig. 8.

5.1.3. Computing DoC for k-hops
Using the following simple calculation, the k-hop degree of con-

nectivity can be determined for each node. DoCk for node i,

DoCi
k =

|V |∑
Mk(i, j) − 1
j=1
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Fig. 9. Adjacency matrix stored in data structures. (For interpretation of the refer-
ences to color in this figure, the reader is referred to the web version of this article.)

Fig. 10. Computation of C = A × B (first iteration). (For interpretation of the refer-
ences to color in this figure, the reader is referred to the web version of this article.)

Hence, the average DoC for the network with maximum

k-hops =
∑|V |

j=1 DoCi
k

|V |
5.2. Demonstration of BCMM with an example matrix

In this subsection we demonstrate the details operations done
in each step of the BCMM algorithm using illustrative figures.

We consider a topology of 14 randomly distributed nodes cor-
responding to a vehicular network at a specific timestamp. At first,
the adjacency matrix, M is generated as per the algorithm de-
scribed in Fig. 6. After that, the adjacency matrix is transformed
into row-wise and column-wise blocks. Fig. 9 shows how the non-
zero elements are stored in blocks of data structure. Here we con-
sidered a block-size of 2 for ease of demonstration. Practically the
number of nodes will be several thousands and the block-size will
be considered either 32 or 64, depending on the processor archi-
tecture. In the figure, the non-zero blocks are marked as yellow.
These blocks actually participate in the multiplication, whereas the
blue blocks do not contribute any value during the multiplication
as they are all zeros.

Initially, both A and B matrices are assigned with the adjacency
matrix M . During the first iteration of BCMM algorithm, M is mul-
tiplied to itself yielding M2 as the product matrix C . This step
Fig. 11. Detail step of multiplying row with column.

Fig. 12. Computing M3 = M2 × M (second iteration).

is shown in Fig. 10, where the red blocks are the blocks that have
changed from A during the process. To elaborate, Fig. 11 shows the
details of bitwise operations that takes place during the individual
row-column multiplication. After the first iteration of BCMM algo-
rithm, only the modified blocks are considered for the subsequent
multiplication steps. After every iteration, C is assigned to A for
next iteration. This incremental approach of chain multiplication is
described in Fig. 12. During the second iteration, only 4 modified
blocks from previous step are used for multiplication. As there is
no new non-zero elements generated in M3, the transitive closure
of M will be given by M2 in this case. Once the transitive closure
is determined, the algorithm terminates discarding any outstand-
ing iteration.

6. Space-time complexity of the algorithm

In this section, we first point out how the complexity of sparse
matrix multiplication was reduced with the aid of our unique data
structure. Then we derive the theoretical complexity of our algo-
rithm.

6.1. Techniques for reducing space-time complexity

• As the matrix is a Boolean matrix, we can use logical operation
AND instead of multiplying two integers. As processors can ex-
ecute logical operation faster than multiplication this reduces
the hardware time consumption.

• Instead of considering each element as a single integer value,
we use 32-bit integers to represent 32 consecutive Boolean el-
ements of the matrix in a row. This makes the space complex-
ity of the matrix reduce by a factor of 32. For 64-bit integers,
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the space requirement reduces by a factor of 64. Moreover,
a single bitwise AND operation of two 32-bit integers can now
be equivalent to previous 32 logical AND operations. Hence,
blocks with size b reduce both space and time complexity by
a factor of b.

• We use a data structure to keep track of those bit-blocks in
matrix M which have at least 1 bit set within the 32 bits.
With the help of this data structure, we only manipulate with
non-zero bit blocks. This means the number of blocks for ma-
nipulation would be at most |E|, where |E| is the total num-
ber of direct links (or edges) in the topology. In practice, this
number would be much less than |E|, because many of those
blocks would have more than one bit set, as it is very unlikely
that all the bits that are set would be distributed over distinct
blocks. In the worst case, this number of non-zero bit-blocks
in M would be equal to |E|; whereas in best case this would
be |V | as each node would have at least one bit set due to self
connectivity. In Fig. 7, we represent the shaded blocks as valid
blocks for manipulation.

• Likewise, instead of manipulating each of the valid blocks of
M with |V | columns of Mk−1, we keep track of the altered
blocks of Mk−1 from previous steps using another data struc-
ture, which practically discards many of the blocks from con-
sideration in the current step, in a sparsely connected network.

• Further, if there are several valid blocks in a row i of M , we
manipulate with column j of Mk−1 until we get the first non-
zero block after AND operation. This means we can determine
the element (i, j) of Mk whenever we get a non-zero result
from AND operation. This also implies that, in best case there
will be only O (V 2) operation needed for one multiplication
step.

6.2. Generalized complexity analysis

In general, the total number of operations required to compute
one element Mk(i, j) in the matrix product Mk is as follows:

Number of operations to compute Mk(i, j) = ∑
Number of

non-zero blocks in row i of M +� ∑
Number of altered blocks

in column j of Mk−1 = Ni
r + N j

c .

Considering all rows of M ,
Nr = ∑|V |

i=1 Ni
r

where, Nr is bounded by |V | ≤ Nr ≤ |E|.
Again, considering all columns of Mk−1,

Nc = ∑|V |
j=1 N j

c

where, Nc is bounded by 0 ≤ Nc ≤ (DoCk−1 − DoCk−2).
Hence, the total number of operations required to complete the

product matrix in each step is =
N × (Nr + Nc)

where, N = |V |
b .

Therefore, the total number of operations required to compute
Mk =� (k − 1) × N × (Nr + Nc).

In our analysis, we are basically interested to observe the con-
nectivity up to a certain number of hops (less than 30). Therefore,
considering k as a small constant value we can see that the best
case complexity to find Mk is O (V 2) and the worst case would be
O (V (V + E)).

7. Applications of the proposed algorithm

In this section, we describe two major applications of this algo-
rithm to find out the network partitioning and the reachability of
broadcast messages within a given amount of time. Both these ap-
plications use the bitwise multiplication of the sparse matrix data
structure.
Fig. 13. Saturation point of multi-hop communication.

Fig. 14. Determining the network partition.

7.1. Determining network partitions

The steps of determining the network partition is very much
similar to determining the k-hop transitive closure. The only thing
is to find the minimum k for which Mk+1 = Mk . At that point, Mk

will give the full transitive closure of the topology. This minimum
value of k, which we define as Cutoff Hop, can be a very impor-
tant property of the wireless network because it determines the
exact point when the degree of connectivity for the network gets
saturated. After achieving this saturation point, no more nodes can
be reached by any node even if the hop number is arbitrarily in-
creased. This cutoff hop also determines the steepness of the curve
that reflects the rate of DoC change with respect to hop increase.
Fig. 13 shows the cutoff hop for a vehicular network which is 20.
After 20 hops, the connectivity gets saturated which means we get
a transitive closure of the topology.

In order to get the partition information from the full transi-
tive closure, Mk , we extract the rows from the matrix where the
total number of distinct row pattern gives the total number of par-
tition and the arithmetic sum of the corresponding row will give
the size of the partition (Fig. 14). This algorithm of determining
the network partition is a novel approach.

7.2. Determining reachability of broadcast messages

Considering the dynamic nature of the topology of a vehicu-
lar network, it is very interesting to measure the propagation rate
of an emergency broadcast message within a fleet of vehicles in a
metropolitan area. In order to measure this we need to consider
the variable positions of the fleet in terms of time. Let us assume
that the vehicles of a specific fleet update their locations every
p seconds and the broadcast message propagates h hops in each
second. If there are n total vehicles and t time intervals to be con-
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sidered, then the percentage of fleet that receives the message is
given by the following equation:

∑n
i=1

∑n
j=1 Mt(i, j) × 100

n
(4)

where Mt is defined by

Mt =
t∏

k=1

(Mk)
p×h (5)

Here Mk is the adjacency matrix for the topology at k-th time
interval.

8. Results of spatio-temporal analysis of traces

In this section, we describe some of the key findings of our GPS
based trace analysis to determine the probability of seamless con-
nectivity within the taxi fleet. First we consider a node positioning
scenario that corresponds to a particular time. Then we attempt to
explore the time varying characteristics of the connectivity. Fig. 15
describes the geographical node positioning of taxi cabs (as ob-
served from satellite) at a random experimental time for which
we analyzed the V2V connectivity. The experimental time chosen
for this snapshot was at 2:30 pm on June 5, 2008 which was a
working day.

8.1. Average degree of connectivity for a specific time

Fig. 16 depicts the impact of transmission range and hop on
average degree of connectivity for the mobile taxi network at a
specific time (2:30 pm) on a working day.It is obvious that, in-
creasing the wireless transmission range will have a significant
impact on the Degree of Connectivity. The ADoC graph shown here
corresponds to the snapshot of the whole taxi fleet at the said ex-
perimental time (Fig. 15).

From Fig. 16, it can be clearly observed that the average de-
gree of connectivity is minimum for single hop connection, while
longer transmission range corresponds to higher degree of connec-
tivity. As we gradually increase the path length (hop count), more
and more source-destination pairs become reachable via multi-
hop communication which ultimately increases the ADoC of the
network. All the curves show a near-linear rate of connectivity in-
crease with the increment of path length up to a certain point
when the curve becomes horizontal. This corresponds to the state
when no more nodes can be explored with further hop increase.
We refer this point as the saturation point. However, the slope
of the curve depends on the transmission range, which implies
that the longer the range the less number of hops are required to
achieve maximum possible connectivity. The ADoC of a network af-
ter saturation indicates the portion of the fleet that can be reached
from an arbitrary source node using multi-hop communication.
The graph can also describe the percentage of the wireless cov-
erage after a specific number of hops for any transmission range
which may provide an estimate for the QoS provisioning of delay-
sensitive applications.

8.2. Change of connectivity with time

In this subsection, we will show the variation of V2V connectiv-
ity with respect to time. For that, we have considered two different
span of intervals, one is relatively short span which is the variation
within 30 minutes and another is relatively long spanning over the
whole day.
8.2.1. Short duration (30 minute)
In this case, we took a total of 30 sample snapshots within a

half an hour duration, where the time difference between each
successive snapshot is one minute. The selected time is from
2:30 pm to 3:00 pm on a business day. First we plot the change of
connectivity from the perspective of a single node. Fig. 17 shows
the change of connectivity for a random node with a transmission
range of 300 m restricted by a maximum path length of 25 hops.
This gives an idea about the rapid fluctuation of V2V connectivity
for an individual node.

If we measure the standard deviation of connectivity change
within this 30 minute interval for all the 536 nodes, we get an ir-
regular scenario as described by Fig. 18. Here many of the nodes
have high variance of connectivity while some others have less
variance.

On the other hand, Fig. 19 shows the change of average connec-
tivity with respect to time for different transmission ranges. This
figure is a 3D projection of Fig. 16 where the topmost layer cor-
responds to transmission range of 1000 m and the bottommost
layer represents the shortest transmission range of 300 m. From
this figure, it can be observed that within a short span of time,
the change of average connectivity is not significant even though
a vehicle can move away more than a mile in the freeways within
a minute. Even if the connectivity of individual node is varying a
lot but when we take the average over all nodes it remains almost
constant. The reason behind this phenomena is because, some cabs
may lose connectivity while traveling out of the downtown or air-
port area while other cabs get connected when they get near a
dense area. The bottom line is the average change of connectivity
over the whole fleet almost remains stable within a short duration
interval.

Fig. 20 describes a little bit more details of the above fig-
ure, where we can closely observe the change of average con-
nectivity for each different transmission range and also measure
the variation of connectivity with respect to time and hops. Each
of the ribbons (stripes) correspond to a particular hop num-
ber which restricts the total path length within that number of
hop.

8.2.2. Long duration (whole day)
In contrast with the short interval, a long duration average

connectivity analysis results into reasonable fluctuation over the
course of a day. This is quite natural because the fleet is not en-
tirely utilized evenly throughout the day and also because of the
impact of rush hours. From Figs. 21 and 22, we can easily observe
that the maximum average connectivity is achieved during the af-
ternoon and evening rush hours (4 pm and 6 pm). At this time
most of the cabs can be found within the vicinity of downtown
area for after office trips. For the transmission range, we consid-
ered a range of 300 m due to the reason that, in downtown area it
might not be possible to reach too far because of the obstacles of
high rise buildings and skyscrapers.

8.3. Network partitioning results at a specific timestamp

We attempt to identify the network partitions of the whole
fleet of cabs based on the instantaneous positions at a certain
time. Using the same topology snapshot as the previously anal-
ysis, the mobile taxi nodes distributed all across the city of San
Francisco can be partitioned into various partitions based on their
wireless connectivity between other nodes. For a specific transmis-
sion range of 300 m, it was found that, out of total 536 nodes,
more than 20 percent of the nodes were isolated or disconnected
from any other node. 16 partitions were found having 2 nodes and
9 with 3 nodes. The largest partitions found included 155 nodes,
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Fig. 15. Taxi node positions at a particular experimental time (blue and red dots refer to empty and occupied taxis respectively). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
which is located in the downtown area. The second largest par-
tition with 120 nodes was found in the airport vicinity. Table 1
shows the distribution of nodes in various sizes of partitions for
300 m transmission range.
8.4. Change of partitioning over time

In order to capture the change of partitions over time we took
two samples-one during mid-day (Fig. 23 – left) and another at
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Fig. 16. Impact of path length and transmission range on ADoC.

Fig. 17. Change of connectivity with respect to time for an individual node.

Fig. 18. Variance of connectivity for all the 536 nodes within half an hour.

Fig. 19. Change of average connectivity with respect to time for different TX ranges.
Fig. 20. Change of average connectivity with respect to hop for different TX ranges.
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Fig. 21. Change of average connectivity with respect to time for 300 m TX range.

Fig. 22. Change of average connectivity with respect to hop for 300 m TX range.

Table 1
Partitioning of nodes for 300 m TX range.

Partition size
(# of nodes)

Number of
partitions

Total
nodes

1 110 110
2 16 32
3 9 27
4 1 4
5 3 15
6 1 6

11 1 11
22 1 22
34 1 34

120 1 120
155 1 155
Total 145 536

mid-night (Fig. 23 – right). The nodes with the same color belongs
to the same connected component or partition. In both the two
parts of the figure, black dots represent isolated nodes that are not
connected with any other node. If the plots are superimposed on
the map of San Francisco, we can see that during the night the
taxis are more scattered in the suburban area than during the day-
time when taxis concentrate near the downtown or airport area.
The dense upper right portion corresponds to the downtown area
and the bottom cluster corresponds to airport.

8.5. Change of partitioning with transmission range

As the degree of connectivity varies along with transmission
range, the partitioning also changes. Table 2 shows the distribution
of nodes in different sizes of partitions for different transmission
ranges. It is quite natural that, the number of isolated nodes (par-
titions with size 1) decreases as the transmission range increases.
Also the total number of connected components is reduced at the
same time. Fig. 24 shows the average size of partitions for differ-
ent transmission ranges. The average partition size is less than 4 in
case of 300 m range whereas in case of 1000 m it goes above 10.

Fig. 25 shows the difference between two partitioning results
for the same time with different transmission range. On the left,
Fig. 23. Change of network partitions with respect to time. The left figure corre-
sponds to noon (12 PM) and the right corresponds to midnight (12 AM).

Table 2
Number of partitions for different transmission ranges.

Partition size Number of partitions

300 m 500 m 750 m 1000 m

1 110 69 46 31
2 16 11 10 10
3 9 7 3 1
4 1 1 2 1
5 3 0 0 1
6 to 10 1 1 3 3
11 to 20 1 0 0 1
21 to 30 1 1 1 1
31 to 50 1 1 1 1
51 to 100 0 0 0 0
101 to 150 1 0 0 0
151 to 350 1 0 0 0
350+ 0 1 1 1
Total 145 92 67 51

Fig. 24. Average size of partitions for different transmission ranges.

due to a transmission range of 1000 m, we have very large parti-
tions which almost connects the whole city. On the right, due to
shorter transmission range of 300 m, we can see lot of smaller par-
titions for the same node positions. Both the plots correspond to
time of 11 AM for a business day.
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Fig. 25. Change of Network Partitions with respect to transmission range. The left
figure corresponds to a TX range of 1000 m and the right corresponds to 300 m.

Fig. 26. Size of the largest partition for 300 m transmission range.

Fig. 27. Size of the largest partition for 1000 m transmission range.

8.6. Dimension of largest connected component

Figs. 26 and 27 show the comparison of partition size for the
largest connected component in two different transmission range.
For a range of 300 m, the largest connected component within the
taxi network consist of 150 to 200 nodes on the average. Whereas
in case of 1000 m transmission range, we can see bigger partition
with around 400 nodes in the largest partition.

8.7. Broadcast propagation rate within a taxi fleet

We analyzed the broadcast message propagation rate within
the entire fleet of 536 taxis of San Francisco Yellow Cabs. We
Fig. 28. Broadcast Propagation Rate Within a Taxi Fleet.

assume that the flooding propagates in a rate of 1 hop per sec-
ond and the frequency of GPS location update is once in every
minute. This means that the topology the considered to be chang-
ing every minute and within this interval the message propagates
through neighbors. Since this rate of propagation depends on the
source node, we take an average considering each node as source
node. Fig. 28 shows the propagation rate for different transmission
ranges. On an average, more than 50 percent nodes of the entire
fleet receives the message in 10 minutes with 300 m transmission
range. As the transmission range is increased, reachability also in-
creases.

9. Conclusion

The paper presents a novel algorithm for spatio-temporal anal-
ysis of multi-hop V2V connectivity and network partitioning. With
the efficient storage and computation procedure, we reduce the
space-time complexity of our algorithm to a great extent. The pa-
per also describes the results of our connectivity analysis from the
real world GPS traces. Our results show that, on an average more
than 70% vehicles can be communicated using multihop vehicu-
lar communication with reasonable transmission range in an urban
environment. The analytical data presented in this paper revealed
many new and useful features that can be helpful for wireless re-
searchers, government organizations, taxi companies and even for
the drivers or passengers. Even though our results might seem to
be vulnerable to the impacts of line-of-sight (LOS), only about 1%
of the geographical area considered within our analyses is vul-
nerable to building obstacles. This includes the downtown area
where large buildings can significantly obstruct the LOS within
300 meter. Other areas do not contribute much in obstructing the
vehicle communication within such a small range. Recent results
from experimental measurement of LOS impact [37] on vehicular
communications show that for a distance greater than 400 m the
difference of the received signal strength between LOS and Non-
LOS transmission is practically zero. This proves that our results
of multi-hop connectivity analyses for transmission ranges greater
than 300 m are literally free from the detrimental effects of build-
ing obstacles. Our future work will explore the clustering feature
of mobility for V2V communications and for DSRC infrastructure
configurations.
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