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SUMMARY

In delay tolerant networks (DTN), nodes explore various opportunities to connect and communicate with each
other. A series of encounters of different nodes will create such opportunities and spread a message among
many nodes and eventually deliver to the designated destination. We study one common DTN scenario where the
message exchanges happen when nodes meet others at certain locations. In this situation, the success of message
delivery and the quality of the delivery highly depend on the likeliness of nodes’ encounters and time elapsed
between encounters. We study the two important quality of service requirements: the probability of two nodes
meeting each other (encounter probability) and the time it takes for two nodes to meet (encounter delay). The key
considerations are how nodes pick its next locations (mobility patterns) and the features of the dwell time. In this
paper, we will study several mobility patterns, including random movement, and activity agenda based movement.
We also study an additional message delivery constraint, i.e., a message will be dropped if not delivered within a
limited number of locations visited. We develop mathematical formulas using Markov Chain as a main tool. Our
work is presented as an illustration through case studies. The methodology applies to mobility models alike and is
extendable to real trace analysis. We present numerical results when closed form formulas cannot be acquired. Our
results help the management of message delivery for delay tolerant networks, e.g., in selecting a proper time-to-live
threshold for a message. Copyright c© 2008 John Wiley & Sons, Ltd.

KEY WORDS: delay tolerant networks, encounter analysis, location-centric message delivery, encounter delay,
encounter probability

1. INTRODUCTION

Nodes in mobile networks explore various opportunities to connect and communicate with other
mobile nodes and fixed nodes. A typical form has been studied as delay tolerant networks (DTN),
where communication nodes are mostly far away beyond their radio signal’s reach, thus self-organized
persistent connectivity does not exist. Nodes with messages to transmit rely on encountering other
nodes during movement and then exchanging messages with each other [1]. Encounter could mean
physical contact or coming within transmission range of each other. When nodes encounter, they are
able to communicate, enabling many missions that are otherwise impossible because they are many
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hops away. A series of encounters of different nodes will spread the message among many nodes and
eventually deliver it to the designated destination.

The importance of node encounter can be seen from the following examples. For large scale mobile
networks, routing decisions can be made solely based on the history of encountering other nodes [2].
For this purpose, each node maintains a database to store the latest time and location of every other
node it encountered. As a packet being forwarded towards its destination, each node is able to refine
the estimation of the destination’s location based on recently updated encounter histories from other
nodes. In the area of security for mobile ad hoc networks, many schemes require physical contacts or
direct links between nodes to setup keys between them or to establish trustness [3][4][5].

The norm in DTN is that nodes are not able to connect to each other most of the time. One common
scenario is that nodes meet others at certain locations where they can exchange messages [6]. For
example, in a remote rural area, people meet each other and exchange messages when they come to
common places, e.g., post offices, drugstores. As another example, in the ZebraNet [7] that monitors
the long term behaviors of zebra, water sources like lakes and rivers are the places that Zebras meet and
wireless devices exchange messages. Recent work has analyzed WiFi network traces and discovered
phenomena of the concentration of communications at locations (as well as motion patterns, flow
patterns and social structures of mobile users)[8, 9, 10]. In these situations, the successfulness of
message delivery and the quality of the deliver highly depend on the likeliness of nodes’ encounters
and time elapsed between encounters.

We are interested in the aforementioned location-centric delay tolerant network scenario. In this
paper, we are motivated to study the above two properties of message delivery based on encounter,
namely, the probability of message delivery based on two nodes meeting each other (encounter
probability) and the latency of message delivery that depends on the time it takes for two nodes to
meet (encounter delay). Note that study on encounter probability has been scattered in a few related
work where DTN mobility models and routing schemes are proposed [11, 12, 13, 6, 14]. Our work
makes contributions in that it is fully dedicated to study the encounter and message delivery issue for a
set of mobility patterns and delivery constraint using Markov chain methods. Some of our results can
be expressed in terms of a continuous time, rather then discrete events.

We adopt the mobility and communication model proposed early, i.e., nodes move among certain
sites and they only communicate when they stay at those sites. Let there be n locations 1, 2, ..., n.
Nodes move from one location to another. Any node that moves to location i will stay there for a
while. In the paper, we select a few mobility patterns for the analysis. The patterns differ in how a
node picks its next location, typical, it could be random, or following an activity agenda. Further, we
consider message delivery scenarios where delivery is not bounded by locations visited and delivery is
constrained by the number of the locations being visited. Our analysis on message delivery properties
are based on node movements among the locations. When nodes meet for the first time and messages
are delivered, the analysis will not consider further movements, typically, our state transition goes to
absorbing state.

We analyzed the node encounter problem through progressively complex scenarios, from not-so-
realistic location independent and simultaneous movements to the more realistic time-variant and
agenda-based movements, from the simple case that can be analyzed using direct probabilities to the
complex case that can only be analyzed by continuous time Markov Chain. By taking a state as the
current locations of two nodes, we obtain our results as a function of time. Some common trends can
be seen following the analysis and numerical results. For example, two nodes eventually encounter
each other given enough time - which implies that message eventually be delivered, it’s only a matter
of time; how fast they will encounter heavily depends on their initial positions and properties of all
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locations - whether a location has high attraction; whether nodes will stay long at this location; and
even this location’s relation with other locations - whether a node entering this location is more likely
to move to another certain location? The methodology that we use here can extend to other possibly
more complicated scenarios and mobility patterns. Following the direction of this work, we expect
message delivery process will be more comprehensible given the encounter pattern of a Delay Tolerant
Network is largely predictable by analysis. Our results help the management of message delivery for
delay tolerant networks, e.g., in selecting a proper time-to-live threshold for a message. We present
numerical results when closed form formulas cannot be acquired.

The rest of the paper is organized as follows. We first give a brief review on the related work in
Section 2 and followed by an introduction to the system model in Section 3. We start with analyzing the
case of constant dwelling time at the locations in Section 4, where discrete Markov chain is used. We
then analyze encounter properties when the dwelling time is a variant in Section 5, where continuous
time Markov chain is the tool for several mobility patterns. Section 6 concludes the paper.

2. RELATED WORK

Delay tolerant networking paradigm is suitable for many applications, where delay in message delivery
is tolerable, for example, ZebraNet [7], remote rural villages [15], message ferry [16] and bus
networks [17, 18]. Some researchers have studied efficient propagation of messages [19, 14, 20, 21, 2],
while some others have studied how to explore mobility properties to achieve capacity and security
[22, 5, 3, 23]. Our work relates to the former category, in that we analyze the probability and delay
of message delivery. A few related work using on-the-fly data collection for calculating encounter
probability to assist message propagation are given here. In probabilistic routing [14], the routing
decision is made based on a metric called delivery predictability. Delivery predictability is established
at each node for every other node indicating the predicated chance of this node delivering messages
to the other node. Each time a node encounters another node, its delivery predictability to that node
will be upgraded. The more frequent they encounter, the higher the delivery predictability. Similar
encounter-based routing algorithm is also proposed in [2], where each node maintains a database of the
time and location of its last encounter with every other node. Routing decision is made solely based on
the encounter history. Several related analytical work are reviewed below.

In one type of the above research, a network scenario where contacts of nodes only appear at
locations is studied and routing protocols are proposed [6, 8]. In Ghosh’s work [6], each node moves
among a list of places referred to as hubs. Each node has its own set of hubs. The authors used a semi-
Markov chain to analyze the contact probability of two nodes at equilibrium and also the probability
that one node meets another at a specific hub within time t. Closed form solution can be obtained for
the first probability but not for the second. While this work focuses mainly on the routing protocol,
the analytical part is rather sketchy. In contrast, our work includes more mobility patterns with more
analytical details. In addition, we analyze the encounter probability when the number of locations
visited is limited.

A more restricted two-hop relay network model, which was first proposed in [22], has been studied in
Hanbali’s work [13] [24][25]. In this model, to send a message to the destination, the source transmits a
copy of the message to every neighbor it meets along its route. These neighbors are allowed to forward
the copies to the destination only but no one else. Each copy of the message has a Time-To-Live (TTL).
When TTL expires, this copy is destroyed. The paper analyzed Meeting time and Inter-meeting time of
a given pair under the assumptions of the inter-meeting time of any two nodes following an exponential
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distribution with rate λ. Also suppose the TTL of any copy follows an exponential distribution with rate
µ. This work differs from ours in several ways. First, the mobility model is different. Random walk
or random direction model (which possesses the inter-meeting time property) are used where nodes
move to any point in an area. Second, the research focus is on the number of message copies, not on
the encounter behavior as we adopt here.

Paper [11] analyzed the hitting time (to a location) or meeting time (of two nodes) for random
direction and random waypoint models. Closed forms of mean time were given. The authors also show
that these results can be used to analyze the performance of mobility-assisted routing schemes. In
paper [12], using wireless LAN traces, skewed location visit distributions and periodic visit behaviors
are discovered and their impact on the hitting and meeting time are analyzed. While the analysis is
based on discrete time unit in [12], our work uses continuous time analysis.

In summary, our work differs from the previous work in that we focus and provide more analytical
results for mobility models and encounter delivery constraints. Our work contributes to the community
with its analysis methodology and a better understanding on the properties of motion behaviors on
message delivery in the delay tolerant networks.

3. SYSTEM MODEL

Our analysis of node encounter problem uses the following system model: There are n locations
1, 2, ..., n. Nodes move from one location to another. Any node at location i will stay there for a
time period. Messages could be delivered when two nodes encounter at a location. A message carrier
may move across several locations while keeping a message before it meets a node and delivers the
message. In this paper, we call each consecutive location visit as a “step”. In our study, we focus on
temporal properties that relate to the dwell time at those locations. Thus, we assume the dwell time
at the locations are long so the transmit time from one location to the next can be omitted. We start
our analysis with less realistic constant dwell time at the locations and move to more realistic variable
dwell time at the locations. For the two cases, discrete Markov chain and continuous time Markov chain
(CTMC) are used respectively (in Section 4 and Section 5). In the study of time-variant dwell time case,
we also consider a message delivery constraint where the message will be invalid (so dropped) when
the carrier has visited a fixed number of locations without delivery. This scenario could arise for a set
of reasons, e.g., buffer full, message expires, or the duty of the message carrier.

Mobility patterns decide the way a node picking its next location. We study the following patterns:
the selection of the next location is random, independent to the current location; the selection of the
next location depends on the current location; and the selection of the next location follows an activity
agenda, where a subset of all locations is available for random pick up for the next activity. In our
examples, we always use two nodes, Alice as a message carrier and Bob as a recipient. When we use
examples to illustrate the analysis results, we configure a network with three locations, see Fig. 1. In the
figure, rectangles represent locations; triangle represents Alice and circle represents Bob. Three time
instants are illustrated. From time t0 at location 1, Alice moves to location 3 at time t1, or to location
2 at time t2. At location 2, massage exchange between Alice and Bob is possible.

Our main results show the encounter probability and encounter delay as functions of time. In
practice, the dwell time of a location could be obtained through observations or consensus. The method
used in this paper provides a way to generate the desired curves and select a Time-To-Live(TTL)
threshold for the message at a desired delivery probability. A longer TTL allows a higher probability
in general according to our results. Alternatively, our analysis also suggests a way to obtain the mean
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Figure 1. Node encounter scenario. Alice
moves around, Bob stays at location 2.

delay time, which is the area covered by the curves of entering absorbing states. A TTL can also be
selected as a multiplication of the mean delay. Because our analysis is based on discrete locations, the
TTL should be updated only counting the actual time that a node stays at a location, ignoring the time
on-road.

4. DISCRETE TIME ENCOUNTER ANALYSIS

Given nodes move among n locations, we study the case that the dwelling time at these locations
are constant. Thus all nodes move simultaneously and we use the concept of step to describe the
movements. A node picks its next location with a probability. The probability could be independent of
or dependent on the current location. Different analysis methodology will be applied to the two cases.
Our key problem is to obtain the encounter probability that the carrier (Alice) and the recipient (Bob)
will meet within K steps (note that a node can visit the same location at different times) they visit.

4.1. Location independent movement

Assume for any node, the probability of visiting location i is pi, i = 1, 2, ...n, no matter where he
currently is. Notice that

∑n
i=1 pi = 1. Then the probability that Alice encounters Bob in the first step

can be simply computed as s =
∑n

i=1 p2
i . The probability that they will encounter in the second step is

(1−s)s because of the location-independent movement. In general, the probability that they encounter
in the i-th step follows a geometric distribution with parameter s. So the encounter probability of Alice
meeting Bob within K steps is

Pr(Alice encounters Bob) = s + (1− s)s + ... + (1− s)K−1s

= 1− (1− s)K (1)

Further, when the communication protocol extends to pass the original message to several carriers,
say m Alice, and each carrier will deliver message to the recipient Bob, the probability of encountering
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Bob is

Pr(at least one Alice encounters Bob) = 1− Pr(no Alice encounters Bob)
= 1− (1− s)mK (2)

4.2. Location dependent movement

While the above case is too simplified, here we study a more realistic case, i.e, the choice of next
location relates to the current one. Or say, the probability that a node visits next location is dependent
on his current location. We formulate the problem using discrete Markov chain. We define a state (i, j)
for the situation that Alice is at location i and Bob is at location j. We define an absorbing state y. It
is the state when both nodes are at the same location, i.e, (i, i) for any location i. The time that Alice
and Bob encounter each other is the time that the chain enters the absorbing state. We denote p0 to be
the initial probability distribution of the Markov chain - a vector of probabilities for the chain starting
at each state. Transition probability q(i,j),(s,t) is the probability that the chain is currently in the state
(i, j) and will be in the state (s,t) at the next step. Thus the transition matrix Q can be denoted as

(
R Y
0 1

)

where R represents the transitions between states that the two nodes are not in the same location; Y is
a column vector representing the transitions into the absorbing state y. According to discrete Markov
chain theory [26], the probability P k

y that the two nodes encounter within the k-th transition of the
chain (absorbed) can be computed by

P k
y = p0Rk−1Y, k ≥ 1

Thus the encounter probability of Alice and Bob within K steps equals to

Pr(Alice encounters Bob) =
K∑

k=1

p0Rk−1Y

= p0(I− RK)(I− R)−1Y (3)

where I is the identity matrix. Let A be the probability of location transition from m to n, that is,
for a node currently at location m, the probability of its next location being n is amn. Then we
have q(i,j),(s,t) = aisajt for non-absorbing states (i, j) and (s, t), due to the fact that Alice and
Bob move independently (to each other). An element q(i,j),y of vector Y can be calculated simply
as 1−∑

all non-absorbing state (s,t) q(i,j),(s,t).

4.3. Examples

Here we use two examples to illustrate above formulas. The network has three locations and two nodes,
Alice and Bob. They move among these locations.

For the location independent case, we use the following three sets of visiting probabilities:
(p1, p2, p3) = (0.7, 0.2, 0.1), (p1, p2, p3) = (0.2, 0.3, 0.5), and (p1, p2, p3) = (1/3, 1/3, 1/3).
Typically, the first set shows a strong preference towards one location, and the third set is a pure
uniform case. The encounter probabilities as functions of moving steps are shown in Fig. 2. The figure
shows that encounter probabilities increase as moving steps increase. Strong preference on a location
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apparently has an impact and yields higher encounter probability, while the uniform location preference
case has lower probability for encounter.

For the location dependent case, the probability of location transition from i to location j is given
below.

A =




0.1 0.4 0.5
0.3 0.2 0.5
0.6 0.2 0.2




For example, A(2, 3) = 0.5 means that for a node currently at location 2, the probability of its next
location at 3 is 0.5. Then we can compute:

R =




0.02 0.1 0.15 0.12 0.2 0.05
0.12 0.04 0.06 0.06 0.1 0.3
0.24 0.08 0.02 0.02 0.1 0.3
0.12 0.2 0.05 0.02 0.1 0.15
0.06 0.1 0.3 0.12 0.04 0.06
0.02 0.1 0.3 0.24 0.08 0.02




Y =




0.36
0.32
0.24
0.36
0.32
0.24




With three locations and two nodes, we have six possible initial states, such as (1, 1),
(1, 2), etc. We choose three different sets of initial probability distribution p0: (1 0 0 0 0 0),
(0.2 0.15 0.15 0.3 0.1 0.1), and (1/6 1/6 1/6 1/6 1/6 1/6). Again, the selections represent three
cases: strongly uneven, random and pure uniform. The encounter probabilities as functions of moving
steps are shown in Fig. 3. It shows that encounter probabilities increase as moving steps increase. But
the initial probability distribution has less influence on encounter probability compared to the previous
case, because the dependence on locations smoothed out the initial difference on location selections.
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5. CONTINUOUS TIME ENCOUNTER ANALYSIS

We have analyzed the encounter probability in the scenario that the location dwelling time is constant.
A more realistic scenario would be people staying at different places for different length of time, for
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example, 8 hours in office and 2 hours in restaurant; and at the same location, people can stay long or
short in time. With this in mind, in this section we study message delivery properties for the scenario
where the dwell time is a variable.

The problem can be analyzed using a continuous time Markov chain (CTMC) [26]. We assume
dwell time to be exponential distribution with rate λi for location i. Our analysis focuses on obtaining
the probability of message delivery within time t (encounter probability) and the mean delay before a
message can be delivered (two nodes meet for the first time) (termed as encounter delay). Our analysis
will study three cases: first, we study random movement, i.e., a node randomly picks next location with
a probability; second, we add the message delivery constraint, i.e., the message delivery is bounded
by a fixed number of locations (steps), otherwise, it is dropped; finally, we study the case where nodes
pick locations from a subset according to a time schedule of activities.

5.1. Random movement

In random movement model, when a node leaves a location, it picks its next location randomly with a
probability. We start with a simple two-node case and generalize to m nodes. In the analysis below, we
assume equal probability for the ease of presentation. The same method can be used when probabilities
are different.

Given Alice is at location i and Bob is at location j, the state of our Markov chain is represented as
(i, j). Let random variable Ti represent the time a node stays at location i. Then the time the chain stays
at state (i, j) is T = min{Ti, Tj}. Apparently T follows exponential distribution with rate λi + λj .
If Alice leaves first, she will enter any of the remaining n − 1 locations with equal probability. As a
result the state transit from (i, j) to (ik, j), ik 6= i. Since Alice leaves location i with rate λi, the rate
of entering state (ik, j) is 1

n−1λi. Likewise, if Bob leaves first, the state transforms into (i, jk), jk 6= j

with rate 1
n−1λj . Finally, if Alice happens to move to the location where Bob is (and vice versa), they

encounter each other and the Markov chain enters the absorbing state y. The rate of entering state y
from state (i, j) is 1

n−1 (λi + λj). Fig. 4 shows transitions leaving state (i, j). We can verify that the
rate of leaving this state is λi + λj .

Let v(i,j) be the rate leaving state (i, j), p(i,j),(s,t) be the probability when leaving (i, j) it will next
entering (s, t), y be the absorbing state when Alice and Bob are in the same location. Then we have

v(i,j) = λi + λj

p(i,j),(i,k) =
1

n− 1
λj

λi + λj

p(i,j),(k,j) =
1

n− 1
λi

λi + λj

p(i,j),y =
1

n− 1

Let p(s,t),(i,j)(t) be the probability that the Markov chain, presently in state (s, t), will be in state
(i, j) after an additional time t. Considering transforming from an arbitrary state (s, t) to another state
(i, j), the Kolmogorov differential equations [26] are as follows:

p′(s,t),(i,j)(t) =
∑

k,k 6=i,j

1
n− 1

λkp(s,t),(i,k)(t) +
∑

k,k 6=i,j

1
n− 1

λkp(s,t),(k,j)(t)− (λi + λj)p(s,t),(i,j)(t)
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Figure 4. State transitions of random
movement: from state (i, j) to other

states. y is the absorbing state.

p′(s,t),y(t) =
∑

u,v,(u,v) 6=(s,t)

1
n− 1

p(s,t),(u,v)(t)

Define transition rate matrix Q as (
R Y
0 0

)

where matrix R contains transition rates between transient states; column vector Y = −ReT contains
transition rates from transient states to the absorbing state y. Here e is a vector whose elements are all
1’s.

Define state probability ps(t) as the probability the chain is at state s at time t. Then py(t) is the
probability the chain is at absorbing state at time t. Let p(t) be the state probability vector for transient
states. p(0) is then the initial condition.

Then the Kolmogorov differential equation can be represented by the following matrix form:

[p′(t) p′y(t)] = [p(t) py(t)]Q

The solution is

p(t) = p(0)exp{Rt}
p′y(t) = p(0)exp{Rt}Y

where exp is the exponential function.
The probability that Alice encounters Bob after time t, starting from time 0, equals to

Pr{chain is at state y at time t} = py(t) = 1− p(t)eT

= 1− p(0)exp{Rt}eT (4)
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Let Ty be the random variable representing the time to reach the absorbing state (starting from time
0), i.e., the time to encounter. We have CDF

Fy(t) = Pr{Ty ≤ t}
= Pr{chain is at state y at time t}
= 1− p(0)exp{Rt}eT (5)

Thus the average time to encounter each other for the first time E[Ty] is:

E[Ty] =

∫ +∞

0

tdFy(t) = p(0)R−1eT (6)

GENERALIZATION Now we generalize the results obtained above to m nodes. Suppose there are
m nodes (Alices), then the encounter probability is 1−∏m

i=1(1− pi), where pi is the probability Bob
encountering Alice i after time t.

Next we consider the encounter delay. Let Ty1, Ty2, ..., Tym be random variables representing the
time for the Bob to encounter Alices 1, 2, ..., m respectively. Apparently these random variables
are independent to each other. Let their corresponding CDF be Fy1(t), Fy2(t), ..., Fym(t). Our first
encounter time can thus be computed as Ty = min{Ty1, Ty2, ..., Tym}. So, its CDF is:

Fy(t) = 1− (1− Fy1(t))(1− Fy2(t))...(1− Fym(t))

where individual Fyi(t) is the same as the single Alice case that we analyzed above. If all m Alices are
identical, we have Fy(t) = 1− (1− Fy1(t))

m. Given Fy(t), we can compute E[Ty] as before.
It should be pointed out that, in this paper, we do not consider the time moving between states

because the moving time in general is much smaller than that of staying in any location. However, if
the moving times are not negligible and have to be added in the model, we can simply add an additional
state between any two states. For example, from state (i, j) to state (s, t), there would be a new state
representing the moving time; the rate of entering this new state is same as the rate from state (i, j) to
(s, t); the rate leaving this added state into state (s, t) is r, the value of which may depend on both states
(i, j) and (s, t). Of course, we have to assume that moving time follows an exponential distribution.

EXAMPLE We illustrate the above analytical results through a simple example. Suppose there are 3
locations with rates (λ1, λ2, λ3) = (1, 2, 3). Here the location 3 is the most ’transient’ location (nodes
stay there for the shortest period of time). Initially Alice is at location 1 and Bob is at location 2. The
complete state transition diagram is shown in Fig. 5. We use Maple to get numerical solutions. The
encounter probability py(t) is plotted in Fig. 6. It is expected that as time goes by, the two nodes will
meet eventually. In the figure, we also plot the probability of the state (1, 2): p(1,2)(t). Except that the
two nodes stay at the state (1, 2) at the initial time, the chance of staying at the state reduces as time
passes by - they may enter other stats or they have encountered. Given any time t0, we can find the
encounter probability py(t0) from the curve of py(t) in Fig. 6. According to our previous analysis, the
CDF for Ty is the same as the curve of py(t). Since E[Ty] =

∫ +∞
0

tdFy(t), it is the area between this
curve and the line Fy(t) = 1.

Other state probabilities p(2,3)(t), p(3,1)(t), p(1,3)(t), p(3,2)(t) and p(2,1)(t) are plotted in Fig. 7. It
shows that the curves have smaller probabilities compared to Fig. 6. This is largely because location
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3 is the most ’transient’ location in the system - so any states containing location 3 are short lived
and thus lower in probabilities. The lowest probability is associated with the initial state (1, 2). This is
because that in order to reach state (2,1), the system has to go through at least one intermediate state.
During the procedure, it is also possible that the system goes to absorbing state before it can reach
this state. This figure also shows different values for different states. This differences come from the
closeness of the states to the initial state (1, 2). For example, the state (1, 3) and the state (3, 2) are
more like to occur than the others if either Bob or Alice moves to location 3 respectively.

We also compare the encounter probability curves for different values of λ: a small set of values
(λ1, λ2, λ3) = (0.5, 1.0, 1.5), a medium (λ1, λ2, λ3) = (1, 2, 3), and a large value set (λ1, λ2, λ3) =
(2, 4, 6). The curves are shown in Fig. 8. Since a larger λ means a shorter dwell time at a location,
which in turn means that nodes have higher mobility, it is not surprise that at any given time a system
with larger λ values will always have higher encounter probability.
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Figure 5. Complete state transi-
tions of random movement: the

three location example.
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Figure 6. State probabilities of
random movement: py(t) and

p(1,2)(t).

5.2. Message delivery with step constraint

Here we study the scenario that message delivery relates to the number of locations the message carrier
Alice takes. Typically, the delivery will abort when a bound on the number of steps is reached. We do
not apply a bound to Bob’s movement assuming a recipient will always like to have a message. We still
use the random mobility model. In using Markov chain to study this problem, we redefine the state to
be (i, j, k), where (i, j) is the location of Alice and Bob respectively, k is the number of steps Alice
has taken so far. The initial value of k is 0. Notice that a step means one visit of a location; it is not
the “step” used in discrete Markov Chain - actually this problem has to be analyzed by continuous
Markov chain. Similar Kolmogorov differential equations look the same as before, with the state now
is (i, j, k).

We again use the 3-location case to illustrate our analysis. Suppose λ1 = 1, λ2 = 2 and λ3 = 3. Also
suppose initially Alice and Bob stay at locations 1 and 2 respectively; the maximum steps Alice can
take is 2, i.e. k ≤ 2. We will have 3 absorbing states: y0, y1 and y2. We combine (1, 1, 0), (2, 2, 0) and
(3, 3, 0) into y0 - encounter without Alice moving; (1, 1, 1), (2, 2, 1) and (3, 3, 1) into y1 - encounter
after Alice takes 1 step; and (1, 1, 2), (2, 2, 2) and (3, 3, 2) into y2 - encounter after Alice takes 2 steps.
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Figure 7. State probabilities of
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Figure 8. Encounter
probabilities of random
movement for three different
sets of (λ1, λ2, λ3): small
(0.5, 1.0, 1.5), medium

(1, 2, 3), and large (2, 4, 6).

For each absorbing state yi, we can calculate the encounter probability and mean delay using the same
method as in the previous subsection.

Numerical solutions are shown in Fig. 9. We have the following observations. Given t, the probability
of encounter at 0, 1 or 2 steps are presented as the curves of py0(t),py1(t) and py2(t) respectively. In
addition, we can obtain the mean time to encounter at 0, 1 or 2 steps as following. Let’s consider the
curve py2(t) in Fig. 9. At an arbitrary time ti, py2(ti) is the probability that Alice has taken 2 steps
and has encountered Bob. The area between this curve and its asymptote is the mean time for Alice to
encounter Bob after 2 steps. Notice that if Alice encounters Bob after 1 step, it will not take the 2nd
step. The latter reason explains why py0(t) shows a higher probability than the other two, and why
py1(t) shows a higher probability than py2(t).

5.3. Agenda based movement

Often, a node’s movements are driven by his social activities. An agenda can be used to organize
times and locations of the events. The agenda-based mobility model [27] captures such a reality. In
this model, an agenda includes a series of activities that a node will participate for a day. Each activity
includes a certain type of location and the time the activity begins. A node moves according to its
agenda from one location to another to participate his activities. For one activity, a node may have
many choices among several possible locations. For example, an agenda item may list the activity
”lunch” at noon with several restaurant selections.

The agenda-based motion pattern reflects a real networking scenario for message delivery in DTN.
We analyze it here. We keep the same assumption that the dwelling time at each location follows
exponential distribution. The location of the next activity will be selected from a set of possible
locations suitable for this activity with same probability (different probability case can be similarly
handled). After finishing all activities on his agenda, a node repeats the agenda. We consider the case
when Alice and Bob have the same series of activities on their agendas, however, the locations are not
necessarily the same. The case of different agendas can be similarly analyzed.
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Let there be H activities in the agenda, noted as A0, A1, ..., AH−1. For each activity Ai, there is
a corresponding location set Si. At the time of taking the activity Ai, one location will be selected
from Si. The size of Si is denoted as |Si|. We assume all H activities are different and thus all Si’s
are disjoint, but they cover all n locations, that is,

⋃H−1
i=0 Si = {1, 2, ..., n}. Alice and Bob, starting

from their respective initial locations (not in the n locations), enter S0 to begin their agenda. After they
finish all the activities in the agenda, they repeat agenda at locations in S0.

A state is now defined as (i, j, k, l), where i is the location of Alice, j is the location of Bob, k is the
number of steps Alice has taken so far, l is the number of steps Bob has taken so far. If k < H − 1 and
Alice takes 1 step, entering location i′, the state transforms to (i′, j, k + 1, l). Suppose it is equally
possible to enter any state in Sk+1. Then the transition rate of this transformation is 1

|Sk+1|λi. If
k = H−1, the system goes to (i′, j, 0, l). Notice that this indicates that when one finishes all activities,
he/she goes back to activity A0 and the number of steps is reset to 0. The corresponding transition rate
is 1
|S0|λi. All states with i = j and k = l are combined into one absorbing state y which represents

encounter. Encounter is only possible when Alice and Bob are in the same location set Si which in turn
happens only when they have taken the same number of steps. For a state to transform into absorbing
state, it must satisfy (|k − l| = 1) ∨ (k = 0 ∧ l = H − 1) ∨ (l = 0 ∧ k = H − 1). An example
of state transitions starting from (i, j, k, l) is shown in Fig. 11. Other cases of state transitions can be
similarly drawn. Since we have the state transition diagram, it is easy to set up Kolmogorov differential
equations as before and obtain encounter probability py(t) and the mean delay.

EXAMPLE We again use an example to show numerical results of the encounter probability py(t).
Suppose we have two activities A0 and A1 for Alice and Bob, and three locations with S0 = {1, 2}
and S1 = {3}. Notice that when Alice and Bob choose their locations for A0, two locations in S0

are available. Thus there is equal probability (1/4) to be in the states of (1, 2), (2, 1), (1, 1), (2, 2)
respectively. For this example, Alice enters location 1 and Bob enters location 2. So initial condition
is p(0) = ( 1

4 0 0 1
4 0 0 1

2 ). We use three different sets of values for λ as before: a set of small
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Figure 11. State transitions of agenda
based movement: from state (i, j, k, l) to

other states. y is the absorbing state.

values (λ1, λ2, λ3) = (0.5, 1.0, 1.5), a medium λs (λ1, λ2, λ3) = (1, 2, 3), and a set of large λ
(λ1, λ2, λ3) = (2, 4, 6). A larger λ means a shorter staying at a location. The encounter probability
curves are shown in Fig. 10. It shows that in a system with larger values of λ, nodes reach higher
encounter probability more quickly.

6. CONCLUSION

In summary, we have presented a set of analysis on encounter probability and encounter delay for
several mobility models for location-centric delay tolerant networks. The behavior of encounter is
largely determined by the selection of the next location as depicted by the mobility models. In this
regard, we have analyzed three mobility models, they are (1) random selection and independent from
the current location, (2) random selection but depending on the current location, and (3) following
an activity agenda. In addition to the location selection, dwelling time at these locations are also
considered. They include constant and time-variant dwelling time. Further, we analyzed an additional
constraint on message delivery, namely, the message will be dropped after the carrier has visited
a fixed number of locations without delivery. To obtain the targeted encounter properties, we have
used discrete Markov Chain and continuous time Markov Chain for constant dwelling time and time-
variant dwell time, respectively. By taking a state as the current locations of two nodes, we obtain our
results of encounter probability and encounter delay as a function of time. We illustrated our analytic
work through easy-to-understand examples with numerical results. We expect such results help the
management of message delivery for delay tolerant networks.
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