
Distributed Naming System for Mobile Ad-Hoc Networks

Xiaoyan Hong, Jun Liu and Randy Smith
Computer Science Department,

University of Alabama, Tuscaloosa, AL 35487
Yeng-Zhong Lee

Computer Science Department,
University of California, Los Angeles, CA 90095

Abstract— Mobile ad hoc networks (MANETs) are self-
organized networks envisioned to deploy with zero (or less)-
configuration effort in places where infrastructure networks are
not available. In such a network, connectivity is enabled by
automatic IP address allocation and dynamic routing. MANETs
are highly dynamic with members joining and rejoining, leaving,
moving around freely, network partitioning and merging, dynamic
address allocation according to location closeness or according to
host’s logical affiliation. These dynamics lead to potential frequent
changes of a node’s IP address. Therefore, application programs
are more likely to use well known names (Domain Names) that are
unique, easy to remember and/or that bear logical semantics of the
parties. On-the-scene translation from a node’s well known name
to its newly assigned network address faces new challenges in
MANETs, which obsoletes legacy Internet Domain Name Systems.
In this paper, we present a distributed naming system that provides
service robustly in the presence of mobility and node failures. We
evaluate the proposed scheme through simulation and compare it
with a centralized ideal naming system.

Keywords – Mobile Ad Hoc Networks, Domain Name System,
Clustering, Fault Tolerance.

I. I NTRODUCTION

Mobile ad hoc networks (MANETs) are self-organized net-
works envisioned to deploy with zero-configuration effort in
places where infrastructure networks are not available. In such
a network, connectivity is enabled by automatic IP address
assignment [1], [2], [4], [5] and dynamic routing [13], [14],
[15]. MANETs are highly dynamic with members joining and
rejoining, leaving, moving around freely, network partition-
ing and merging [3], dynamic address allocation according
to location closeness [6] or according to host’s logical
affiliation [16]. These dynamics lead to potential frequent
changes of a node’s IP address. Therefore, communications
among network users are more likely using well known names
(Domain Names) that are unique, easy to remember and/or

Yeng-Zhong Lee was supported by ONR ”MINUTEMAN” project under
contract N00014-01-C-0016.

that bear logical semantics of the parties. Translation from
a node’s well known name to its newly assigned network
address, which may indicate its current network location or
reflect a routing hierarchy, has to be made before a real
connection can be established.

When an ad hoc network is almost static and is small
in scale, a straight forward adaptation from Internet Do-
main Name System (DNS) and manual configuration would
be sufficient. However, this research recognizes that many
MANET applications are large in terms of mobile hosts
involved and complex in terms of the tasks performed. In
this context, traditional static hierarchical domain name server
structures (corresponding to Internet domain name hierarchy)
faces challenges in maintaining the hierarchy in a dynamic
environment. Manual configuration of query paths among
distributed databases does not work either.

We identify the following requirements for name services
concerning the unique features of MANETs. First, MANET
name system should be able to support name conventions that
either reflect logical organizational affiliation or a totally un-
structured name. Second, MANET name system must be able
to deal with frequent topology changes and node failures. Re-
dundancy is considered an advantageous feature that provides
fault tolerance to the naming system. Third, low overhead and
load balance are highly desired to sustain the resource limited
(bandwidth, battery power) mobile devices. In this paper,
we present aMANET Distributed Naming System (ADNS).
ADNS supports unstructured name convention. It includes
a distributed server system that allows redundancy for fault
tolerance, a lookup scheme that reduces query overhead and
balances the query/response load, and a server maintenance
scheme that enables the server overlay network to evolve with
mobility.

Without a naming service, resolution could use brute force
flooding issued by either the node that experiences an ad-
dress change to announce the newly obtained address; or,

by the source that requires a resolution of the destination’s
name. Address changes can also be handled using Mobile
IP. However, how to locate a node’s home agent becomes
another non-trivial problem. Zhouet al [10] tried to avoid
Mobile IP but used an address handoff scheme for MANET.
In the scheme, two IP addresses are bound to a network
interface so that the new address can be used for route
reestablishment while the old address can maintain on-going
connections. In other research, design of naming services for
MANET is tied to routing protocols. Existing work [11], [12]
use hierarchical routing protocols associated with hierarchical
address schemes indicating nodes’ network positions in the
routing hierarchy. In such a network, when mobility causes
network topology change, it directly results in the change of a
node’s position in the routing hierarchy and hence its address.
Thus address lookup for a specific identifier is frequently
made and typically occurs in several recursive steps. Each
of the steps moves the query to a closer intermediate node
for final address resolution.

Two recently proposed name systems can be used
for MANETs. Linklocal Multicast Name Resolution
(LLMNR) [7] is designed for local links and supports small
networks including ad hoc networks. However, it serves
only as a secondary name resolution mechanism to DNS for
scenarios where a conventional DNS name resolution is not
possible. Thus it is not feasible for MANET as a primary use.
Multicast based MANET Name Directory Service (NDR) [8],
[9] restricts name resolution in a link-local domain or a
site-local domain for IPv6. The scheme requires nodes to
join a special multicast group. A name can be resolved by
sending a query along the tree. When the site-local domain
is the whole network (most likely the case for MANET), a
query will be flooded over the entire network.

Different from the above work, we are concerned about
the influence of a name system on network performance.
Facing the aforementioned challenges, our design features
dynamically elected distributed server system, a load-balanced
registration and lookup protocol, and mechanisms handling
server mobility. The rest of this paper is organized as follows:
Section II gives the design of the distributed name system.
It includes server election, registration and lookup protocols
and system maintenance in dealing with network dynamics.
The name system is then evaluated in Section III. Section IV
concludes the paper.

II. D ISTRIBUTED NAMING SYSTEM FORMANETS

A. Network Assumptions

We assume each network member has a well known name
as its unique identifier. This well known name may or may not
contain hierarchical organizational structure. In our design,
the names are considered to be flat. The argument is that a
MANET is a highly mobile and dynamic network, hierarchical
names will not necessarily help name resolving like Internet
DNS. Before a node joins the network, it is preloaded with
all the well known names in the network. Or at least, it is
preloaded with a set of well know names that it wishes to

communicate with during its network operation lifetime. It
is also possible that a search engine in a MANET provides
URL information leading to an unique host name. With this
name, any node will be able to find a destination’s IP address
by querying a name server. Our naming service will allow
registrations and updates of< name, address > bindings as
well as lookup requests.

For the mobile network, we assume that the frequency of
address change is far less than the frequency of the occur-
rence of communication sessions. That is to say, the network
traffic is more intense compared to the frequency of topology
changes. Also we assume that the time for all the servers to
converge to a new< name, address > binding is far less
than the time a binding stays stable. These two assumptions
are considered reasonable in the sense that nothing can be
really accomplished in a network that changes too quickly.

B. Overview

The MANET Distributed Naming System (ADNS)provides
registration and lookup service for each node about its current
IP address. It includes a distributed server system that allows
redundancy in its repository of binding records, a lookup
scheme that tries to reduce the query overhead, and a server
maintenance scheme where the server structure evolves with
mobility. The design is distributed in order to avoid single-
point-of-failure in a mobile environment and also to balance
the query/response load. Multiple name servers are chosen
to store an individual name-to-IP address mapping. In other
words, node A’s< name, address > binding is maintained
at a small subset of the current stable name servers, which are
referred to as A’s name servers. Different names have different
subset of servers from all the name servers. So a query can be
resolved using a nearby name server. The redundant repository
also provides fault tolerance to query failures, namely, when
a query fails at one server, a node can be looked up at another
server. The servers that an address registration or lookup is
made to are determined completely based on A’s well known
name. The components of ADNS are described below, they
include server selection, indexing structure, name hashing
and server selection, address registration and query, and data
repository maintenance.

C. Name Servers, Registration and Query

1) Elected Name Servers:Members in MANET are dy-
namic both temporally and spatially. There either lacks a
way of predesignating a set of nodes as servers or it is not
feasible to permanently assign a node as a name servers.
Our name servers are selected among the network members
through clustering algorithms such as the ones presented in
[19], [20], [21]. The cluster heads server as name servers
and announce themselves to the entire network. Particularly,
we use k-hop Random Competition based Clustering [22]
for a more stable set of servers. [22] has shown that
the algorithm is more stable than ID-base (Lowest ID) and
connectivity-based (Highest Degree) algorithms. The elected

servers are distributed among all the nodes and dynamically
adapt to network topology changes. Running on top of a
proactive MANET routing protocol, the clustering messages
are propagated by piggybacking in other routing messages, so
overhead is minimized.

2) Indexed and Segmented NS Table:Each node maintains
a name server table (NS table) for all the name servers
upon receiving server advertisements. The table is sorted in
descending order based on the names of the servers and
indexed. Thus, all the nodes see the same NS table. Like a
routing table, an entry in the NS table stores a server’s name,
IP address and next hop towards it through a shortest path.

The NS table is then segmented for redundancy. Letl be
the degree of redundancy, i.e., a name record will be stored at
l servers. Usually,l can be small. So there will bel segments
in the table. If the NS table has a size ofn, each segment has
m = dn/le name servers (m < n). Please note that thelth

segment may not have a full size ofm name servers. However,
this fact will affect only the redundancy of a part of the name
records stored at several servers, but not the operation of the
name service.m effectively gives the actual number of name
servers used for distributing naming service load.

3) Name Hashing and Server Selection:To deal with the
changes of the servers, we use the index of a NS table for
server selection. That is, a host name is always corresponding
to a sever in a particular location in the NS table through
hashing. In order to provide redundancy, several indexes will
be used for a single name. The servers at the indexed positions
are the name servers of the node.

A node N’s well known name is hashed into an integer in
the range of [0 , m-1], say,i = H(N), whereH is the hash
function, and0 <= i <= m−1. Function H can be as simple
as i = V al(N) mod m. The name servers for nodeN , then,
will be the servers at theith position of each segment. The
indexes for the servers are{j : j = k ∗ m + i; j < n, k =
0, 1, ..l−1}. Whenj falls into the last segment and is greater
than or equal to n, no correspondent server exits. Thus for
the nodes whose last server index falls out of the range, the
server redundancy is one less than the other nodes. However,
sincem < n, each node will have at least one name server.

4) Address Registration and Lookup:Each nodeN reg-
isters its< name, address > binding to each of its name
servers through unicast. If nodes’ unique well known names
are associated with uniformly distributed value and the servers
are elected according to a not-name-related weight (here,
random competition based on time), the hashing function
results in a uniform distribution in server selection. Thus the
distances from one arbitrary node to its servers are uniformly
distributed over the network. The load of registration is
uniformly distributed among all the servers as is the storage
overhead.

When sourceA wants to communicate with nodeN , it uses
the same hash function H to calculate the indexes of N’s name
servers. SourceA then uses the indexes to gather all of node
N ’s name servers into a setNSN . From setNSN , A chooses
the closest server and sends the query message. In case of a

tie, i.e., more than one server has the same closest distance,
A randomly picks one. Upon receiving a failure message or
experiencing a query timeout,A then turns to a less closer
server. In case the failure is caused by a change of the name
server at the index position,A will delay querying a server
that is recently elected, instead, it turns to the next less closer
one so to avoid inconsistency. More details on name server
mobility are discussed next.

5) An Example:Figure 1 shows an example of the opera-
tion of the ADNS. The network has four name servers notated
by A,B,C, andD respectively. They are ordered in the same
way. The redundancy degreel is set to 2. Thus, a NS table
has two segments. At one moment, nodeU hashes its name to
the first entry of each segment. The entries indicate thatU ’s
name servers areA and C. Node U then sends registration
messages to them. Later, when nodeV needs to communicate
with U , it picks nodeC from U’s name server set{A,C} as
C is closer.

A

D
B

C

A

B

D

U

C

C

A

B

D

V

A

D
B

C

A

B

D

C

A

B

D

U

C

C

A

B

D

C

A

B

D

V

Register
Look up
Register
Look up

A,B,C,D: name servers
V: source

U: destination

NS tables

Fig. 1. Example: ADNS

D. Facing Mobility: Database Maintenance

In mobile networks, mobility or mission reorganization will
cause a mobile node to change its address; or when topology
changes too dramatically, the clustering algorithm will re-
elect new cluster head(s). In the former case, a node will
acquire a new address, thus need to update its servers with
the new address. When the node is a name server itself,
the new address will be advertised to the network with the
routing update messages. When the latter situation happens,
i.e, election causes name server to change, issues to be
addressed involve server handovers. Both are discussed below.

1) Address Update and Lookup:Whenever nodeN
changes its address, it calculates its server indexes and collects
its server set. The node sends its new< name, address >
binding to its current address servers. The update messages are
sent to all the servers regardless of their distances. Since the

change of server structure is much slower than the occurrence
of communication traffic, sending updated name-address bind-
ings to a few registration servers will not generate significant
overhead to disturb routing and data communications.

2) Server Handover and Database Maintenance:As a
result of cluster re-election, new server(s) will replace old
server(s), which, will cause replacing one NS table entry or
reordering of the indexing table (the worst case is that all the
entries are reordered even though most old servers remain
as servers). While a well known name still hashes to the
same set of indexes, the servers may have changed to different
nodes. There are two ways to deal with databases stored at
old/new servers during the change of name servers, namely,
node proactive registration and server database handover.

Detecting Server Change.In order to capture changes
of the servers at the indexed NS table, a Boolean field
recentlyChanged is associated with each entry. For example,
if a serverL occupies the3rd place in the NS table, the field
is markedFALSEwhen the network is in a stable state. When
re-election of cluster head (server) occurs and a new serverM
occupies this3rd entry, the field is set toTRUE. The value of
TRUEwill keep for a shortholdingT ime and reset toFALSE
after it is believed thatM has been updated with the most
recent database. The shortholdingT ime depends on many
factors, such as: the server handover scheme, whether nodes
proactively update their name-address bindings, how frequent
nodes update their bindings, and the network diameter (mea-
sured in hop distance). Related operations on the field will be
described in later paragraphs.

No matter the type of the underlying routing protocol,
the server advertisement assembles a Distance Vector routing
algorithm. Thus, when a node periodically updates itsNS
table based on a newly received NS updating message, the
node will use a secondary NS table to store and sort the
new NS updates first. It then compares the secondary table
with the existingNS table. The node can easily tell whether
at each index, the entry indicates different servers. If there
is a difference, the server from the secondary NS table will
replace the existing entry. This entry will be markedTRUE
at its recentlyChanged field. With the propagation of NS
advertisement, the new server information will be notified to
all the nodes in the network. As a consequence, all the nodes
will update and mark theirNS tables accordingly.

Proactive Registration. When a node detects a change of
its name server sets, e.g., nodeA hashes its well known name
into the same indexes, but finds some content of the indexes
have changed to new servers where fieldsrecentlyChanged
are markedTRUE, node A immediately updates those
servers of its current name-address binding. Corresponding
recentlyChanged fields are then set toFALSE after A
updates the servers. A single server replacement may result
in several nodes registering to the new server. The old servers
simply discard their databases. Note that a query to a previous
server will return a failure, so the source will look up the other
servers. This situation only happens during the time when new
server information is still propagating through the network. A

short period of inconsistency of NS tables at different nodes
causes the failure.

Database Handover.This approach requires servers ex-
plicitly handover their databases. When a node is defeated
in an election, it checks in the newNS table for the entry
that it previously occupied to see which is the current server.
It then sends its database to the server and discards its own
database. The new server marks itsrecentlyChanged field
FALSE after receiving the database. If a new server causes a
reordering of several servers in theNS table, all these servers
will handover their old databases to the ones newly occupying
their old positions. They will receive databases from the nodes
previous referenced at their newly occupied indexed entries.
When the network is large in scale and each segment contains
only a few servers, the database can be very large. Local traffic
could increase temporarily during the handover period.

However, the database handover among servers is con-
sidered redundant given that proactive registration is always
needed in order to keep name-address databases fresh. A
node can always detect whether its servers have changed
or not, so as to update the new servers immediately. In
some extreme cases, e.g., network partitioning or merging,
generation/replacement of servers may associate with address
changes of some nodes as a result of the dynamic nature
of MANETs. Then database handover will be accompanied
by address registration. Thus in our design, we adopt the
proactive registration approach for the database maintenance.

3) Avoiding Invalid Queries: Having the
recentlyChanged field indicating the validation of a
server, a sourceS can avoid sending a query that is doomed
to failure. S will not use a server that has been marked
TRUE in its recentlyChanged field. Instead,S queries
the next closer server for the destination. IfS finds that
all the hashed entries are markedTRUE, it delays for a
while (the holdingT ime can be pre-configured) before it
references again to the servers in the hashed entries and
chooses the closest one. The delay gives the new servers time
to populate their databases. Typically, after the short delay
period, each node remarks the indexing table and resumes its
full functionality.

Whether an ongoing application will be affected by a node
address change depends on how quickly the new address
is resolved. It is possible that a few packets will be lost
before the application discovers packet loss (due to the address
change). This loss is typically the same as packets loss
incurred by a broken route. If the application uses reliable data
transmission protocols, data packet loss will be recovered. As
for how long packets have to be buffered in looking up for an
address, several factors are concerned, including: the round
trip time for the unicast lookup query and its response; in
case of handover, the number of iterative queries to several
servers; or the holding time for the database to converge. For
large-scale networks, the holding time could be large in order
to gather fresh bindings from distant destinations.

III. S IMULATION EVALUATION

We evaluate ADNS using a very dynamic application sce-
nario where a large number of mobile hosts are involved. The
nodes are organized in logical groups, e.g., tank battalions,
infantry companies, UAV swarms, etc. Complex missions are
launched which typically comprise several such teams. As the
missions evolve, groups of nodes are reconfigured and new
groups are often created by rearranging and regrouping the
assets in response to new emergencies. These activities cause
the network members to change their IP address frequently.
The operation of the network is supported by automatic
group detection at the network layer through recognition of
motion affinity among members belonging to the same logical
groups and motion differences between different groups [18].
Landmark Ad Hoc Routing Protocol (LANMAR) [16] is used
to provide scalable routing by exploring the group behavior
exhibited. The challenge of the network is that nodes’ ad-
dresses are designed to reflect the address aggregation over
motion groups to enable CIDR-like [17] scalable routing. The
automatic group formation causes dynamic address change
when they perform their tasks. In simulating the network,
group motion evolution is the norm of the network. Building
on top of LANMAR, ADNS coordinates server election
with the group formation algorithm and also updates server
information with the landmark routing update messages.

We presents two set of evaluations for the network scenario.
The first set evaluates the ADNS scheme with different
redundant factors. Metrics evaluated are (i)average name
registration and lookup distance– the average hop distance
that registration and query messages travel; and (ii)query
overhead– the total number of query messages transmitted in
the network. The other set investigates data communications
when ADNS is used for such a network with comparisons
to an ideal name service. With the ideal name service, a
source can lookup for a destination’s most current address
immediately. Results from this scheme provide an upper
bound for all the performance metrics. The metrics include:
(iii) packet delivery fraction– the ratio between the number of
data packets received and those originated by the sources; and
(iv) average end-to-end packet delay– the time from when
the source generates the data packet to when the destination
receives it.

A. Simulation Scenario

The simulations use the GloMoSim simulation platform
[23], a discrete-event, detailed simulator for wireless network
systems. The message exchange uses a MAC layer that real-
izes the default characteristics of the distributed coordination
function (DCF) of IEEE 802.11, where RTS/CTS/DATA/ACK
mechanism is used to provide virtual carrier sensing for
unicast data packets, and CSMA/CA is used forBroadcast
packets. The radio model uses characteristics similar to a
commercial radio interface (e.g., Lucent’s WaveLAN). The
channel capacity and transmission range are 2 Mbits/sec and
200m respectively.

The simulations run in a network occupying a square field
of 1000m X 1000m, with 100 initial uniformly distributed
mobile nodes. The mobile nodes are in 4 groups, each having
25 nodes. The nodes initially occupy a quarter of the area
without overlapping. The motion of the mobile groups is
modelled using theReference Point Group Mobility (RPGM)
model [24], i.e., sets of nodes move in different common
trajectories with a little randomness. Nodes have no group
identities at the beginning. They dynamically form logical
groups after simulation starts [18]. If ADNS is used, nodes
will register/update to their name servers. For the referencing
ideal naming service, nodes will register/update to a single
centralized data structure available for immediate access by
all the nodes all the time. The name server update messages
are sent with the LANMAR routing updates.

Constant Bit Rate (CBR) data sessions with randomly
chosen source-destination pairs are used. The CBR sessions
are short lived. When one pair stops communication, another
pair will be generated. So the network keeps constant offered
load over the simulation time. Each CBR session sends a
packet of 512 bytes every second for two minutes. Each
simulation runs for 10 minutes with a warm up period (which
is required by the dynamic group formation algorithm) of 4
minutes (to suit all the mobility cases). The communications
start after the warm up period.

B. Results

Our first result (Figure 2) gives the average hop distance
travelled by registration and query messages as a function
of offered load. Mobility is moderate at 6 m/s. The result
compares server redundancy at 1 and 2. The figure shows
that query distances are shorter than registration distances
as expected since the queries are always sent to the closest
server. The figure also reports that for registration, redundancy
does not make a big difference since servers are uniformly
distributed, while for query, redundancy helps reducing the
distance since a node is offered more severs in choosing a
closest one.

Figure 3 gives the total number of query messages transmit-
ted in the network. We compare ADNS with the brute force
query flooding. The figure shows a much slower increasing
trend of overhead of ADNS than for query flooding, showing
the benefit of using a name system. The figure also shows
that the query messages are not affected by redundancy.
While expectation might be that redundancy should bring
lower overhead, the network scale simulated here is not
sufficiently large to emphasize the distance advantage (Figure
2) in reducing overall number of query messages.

The second set of simulation varies mobility so to ob-
serve how the proposed scheme reacts to the dynamic group
membership change. 10 pairs of CBR traffic is offered and
redundancy is 2.

Figure 4 gives packet delivery fraction as a function of
mobility. Generally both performances degrade when mobility
increases. The figure shows that the ADNS scheme degrades
faster than the ideal case when mobility increases. Since high

 2

 2.5

 3

 3.5

 4

 5 10 15 20 25 30

A
ve

ra
ge

 H
op

 D
is

ta
nc

e

Offered CBR Pairs

Registration, Segment=1
Registration, Segment=2

Query, Segment=1
Query, Segment=2

Fig. 2. Lookup Distance

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30

Q
ue

ry
 O

ve
rh

ea
d

Offered CBR Pairs

Segment=1
Segment=2
Brute Force

Fig. 3. Total Transmitted Query Messages

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 2 4 6 8 10 12 14 16 18 20

D
el

iv
er

y
F

ra
ct

io
n

Mobility (m/s)

with ADNS
with ideal NS

Fig. 4. Data Packet Delivery Fraction

mobility causes more frequent address changes of the mobile
nodes and more server reelection, the further degradation of
ADNS counts for server address changes and server handover
when communications are in session (note that we evaluate
ADNS in a very stressful scenario where dynamic group
formation affects routing and addressing). In addition, reg-
istration and query massages could be lost when they can
not find the intended servers. Currently we are working on
improving both the formation algorithm and ADNS scheme.

 0

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 E
nd

-T
o-

E
nd

 D
el

ay
 (

m
s)

Mobility (m/s)

with ADNS
with ideal NS

Fig. 5. Average End-to-End Delay

Figure 5 reports changes in average packet end-to-end delay
when mobility increases. Using ADNS, packets experience
longer end-to-end delay compared to the ideal case due to
the buffering for name resolutions. With the ideal lookup
scheme, mobility has no influence at all. However, higher
mobility increases ADNS’s delay because more queries go to
the second server, which increases the buffering time, hence
the end-to-end delay. From our specific network configuration,
the delay falls within a reasonable range in the sense that
applications (using TCP) other than CBR (using UDP) can
still recover from timeouts caused by a few individual packets.

IV. CONCLUSIONS

The dynamic nature of mobile ad hoc networks requires
name service to support on-the-scene translation of a mobile
node’s permanent well known name to its current network
address which possibly changes frequently. This paper pro-
poses a Distributed Naming Service for MANETs (ADNS) to
meet the need. ADNS provides a distributed and redundant
server structure, balances the query load and provides fault
tolerance. The simulation results show that the distribution
of name servers helps to decrease the lookup traffic, and the
service reacts to dynamic organization of the mobile nodes
promptly and accurately, providing valid name resolution with
reasonable delay. Future work will include investigating nam-
ing system for networks using on-demand routing protocols.

REFERENCES

[1] S. Nesargi and R. Prakash, ”MANETconf: Configuration of Hosts in a
Mobile Ad Hoc Network”,Proceedings of INFOCOM 2002, New York,
June 23-27, 2002.

[2] C. Perkins, J. Malinen, R. Wakikawa, E. Belding-Royer, and Y. Sun,
”IP Address Autoconfiguration for Ad Hoc Networks”, Internet draft,
draft-ietf-manet-autoconf-01.txt, Nov. 2001.

[3] R. Wakikawa, J. Malinen, C. Perkins, A. Nilsson, and A. Tuominen,
”Global connectivity for IPv6 Mobile Ad Hoc Networks”, Internet draft,
draft-wakikawa-manet-globalv6-01.txt.

[4] G. Chelius and E. Fleury, ”IPv6 Addressing Architecture Support
for mobile ad hoc networks”, Internet Draft, draft-chelius-adhoc-ipv6-
00.txt, September 2002.

[5] H. Zhou, L. Ni, and M. Mutka, “Prophet Address Allocation for Large
Scale MANETs,”Proceedings of IEEE INFOCOM 2003, San Francisco,
March, 2003.

[6] J. Eriksson, M. Faloutsos, S. V. Krishnamurthy, ”Scalable Ad Hoc
Routing: The Case for Dynamic Addressing”,IEEE INFOCOM 2004,
Hong Kong, 2004.

[7] Levon Esibov, Bernard Aboba, Dave Thalerx, ”Linklocal Multicast
Name Resolution (LLMNR),” INTERNET-DRAFT draft-ietf-dnsext-
mdns-38.txt, DNSEXT Working Group, 19 February 2005.

[8] Jaehoon Jeong, Jungsoo Park and Hyoungjun Kim, ”NDR: Name
Directory Service in Mobile Ad-Hoc Network”,ICACT 2003, Korea,
January 2003.

[9] Jaehoon Jeong, Jungsoo Park and Hyoungjun Kim, ”Name Directory
Service based on MAODV and Multicast DNS for IPv6 MANET”,VTC
2004-Fall, Los Angeles, CA, USA, September 26-29, 2004.

[10] H. Zhou, M. Mutka, and L. Ni, “IP Address Handoff in the MANET,”
Proceedings of IEEE INFOCOM 2004, March 2004.

[11] Benjie Chen and Robert Morris, ”L+: Scalable Landmark Routing and
Address Lookup for Multi-hop Wireless Networks,” MIT LCS Technical
Report 837, March, 2002.

[12] Jakob Eriksson, Srikanth V. Krishnamurthy, Michalis Faloutsos, “Peer-
Net: Pushing Peer-to-Peer Down the Stack”,International Peer-To-Peer
Symposium (IPTPS 2003), Berkeley, Feb 2003.

[13] C.E. Perkins and E.M. Royer, ”Ad-Hoc On-Demand Distance Vector
Routing,” in Proceedings of IEEE WMCSA’99, New Orleans, LA, Feb.
1999, pp. 90-100.

[14] D. B. Johnson and D. A. Maltz, ”Dynamic Source Routing in Ad Hoc
Wireless Networks”, InMobile Computing, edited by T. Imielinski and
H. Korth, Section 5, Kluwer Publishing Company, 1996, pp. 153-181.

[15] B. Bellur and R. G. Ogier, “A Reliable, Efficient Topology Broadcast
Protocol for Dynamic Networks,” inProc. IEEE INFOCOM ’99, New
York, March 1999.

[16] G. Pei, M. Gerla and X. Hong, ”LANMAR: Landmark Routing for
Large Scale Wireless Ad Hoc Networks with Group Mobility,” in
Proceedings of IEEE/ACM MobiHOC 2000, Boston, MA, Aug. 2000,
pp. 11-18.

[17] V. Fuller, T. Li, J. Yu, K. Varadhan, ”Classless Inter-Domain Routing
(CIDR): an Address Assignment and Aggregation Strategy”, RFC 1519,
Sept., 1993.

[18] Xiaoyan Hong and Mario Gerla, ”Dynamic Group Discovery and
Routing in Ad Hoc Networks,”Proceedings of the First Annual Mediter-
ranean Ad Hoc Networking Workshop (Med-hoc-Net 2002), Sardegna,
Italy, Sept. 2002.

[19] C. R. Lin, and M. Gerla, ”Adaptive Clustering for Mobile Networks,”
IEEE Journal on Selected Areas in Communications, Vol. 15, No. 7,
Sep. 1997, pp. 1265-1275.

[20] A. Amis, R. Prakash, D. Huynh and T. Vuong, ”Max-Min D-Cluster
Formation in Wireless Ad Hoc Networks”, inProceedings of INFO-
COM 2000, Tel Aviv, Israel, March 2000.

[21] M. Gerla, T.J. Kwon and G. Pei, ”On Demand Routing in Large Ad
Hoc Wireless Networks with Passive Clustering,”Proceedings of IEEE
WCNC 2000, Chicago, IL, Sep. 2000.

[22] Kaixin Xu and Mario Gerla, ”A Heterogeneous Routing Protocol Based
on a New Stable Clustering Scheme,”IEEE MILCOM 2002, Anaheim,
CA, Oct. 2002.

[23] M. Takai, L. Bajaj, R, Ahuja, R. Bagrodia and M. Gerla, ”GloMoSim: A
Scalable Network Simulation Environment”,Technical report 990027,
UCLA, Computer Science, 1999.

[24] X. Hong, M. Gerla, G. Pei, and C.-C. Chiang, ”A Group Mobility
Model for Ad Hoc Wireless Networks”, inProceedings of ACM/IEEE
MSWiM’99, Seattle, WA, Aug. 1999, pp.53-60.

