
Programming Network via Distributed Control in
Software-Defined Networks

Boyang Zhou and Chunming Wu∗
College of Computer Science

Zhejiang University

Hangzhou 310027, China

{zby,wuchunming}@zju.edu.cn

Xiaoyan Hong
Department of Computer Science

University of Alabama

AL 35487, USA

hxy@cs.ua.edu

Ming Jiang
Institute of Soft. and Intelli. Tech.

Hangzhou Dianzi University

Hangzhou 310027, China

jmzju@163.com

Abstract—Programming a network for innovative services or
for function improvements has never been easier using Software-
Defined Networking (SDN). However, the programming tasks can
also be significantly complicated by the asynchrony of data plane
states and complexities of service control states. In order to
reduce the complexity for programming a network service in
Distributed Control Plane of SDN, we propose a proGRAmming
Control (GRACE) layer as a generic solution, which provides
two key features, namely, reconfigurability and reusability. Their
implementations deal with aforementioned challenges, thus to
achieve the consistency of the data plane states and the reusability
of the service control states at the distributed controllers. This
paper introduces the reconfigurability and reusability with their
design goals and their impact on the programmability of DCP.
We further use two popular network services, ICN (Information-
Centric Networking) and CDN (Content Distribution Networks)
to illustrate these concepts. NS-3 simulations and PlanetLab
emulations are conducted to show the advantage of using the
GRACE layer for ICN and CDN. Results show that the ICN
Interest delay is reduced by 19.6% and CDN request delay is
reduced by 81% in extremely harsh network conditions.

I. INTRODUCTION

Programming a network for innovative services or function
improvements has never been easier thanks to the separation
of the controller plane and data plane in Software-Defined
Networking (SDN)[1]. Further, distributed control plane (DCP)
of SDN has enabled network service developments in a large
scale with flexibility and configurability[2][3][4]. In DCP, the
data plane is partitioned into multiple domains of switches.
Each domain is controlled by its controller in the control
plane in the centralized manner. The controllers collaborate
with each other in DCP to support network services. For each
service, a controller configures its switches to execute the
forwarding logics of the service logic; and many controllers
disseminate their control states among themselves to ensure
they achieve the service logic with consistency.

Programming a network with DCP is a process of transfer-
ring the designed service logics to the running code at control
plane and also writing the forwarding logics and control
states to the data plane. Moreover, as the state-of-art Internet
research and development demonstrate, new innovative designs
merge consistently and quickly. Thus, programming a network
becomes a frequent event, enabling evolution of the function-
alities of the running services.

The process of programming the network contains two
major tasks. One task is updating the new service logics at

∗ corresponding author, E-mail: wuchunming@zju.edu.cn

all the controllers according to the new research/development
ideas. The other task is updating the forwarding states at the
data plane. The former requires the control states at all the
controllers to be synchronized and consistent about the new
service logics. The latter requires all the forwarding states
to be consistent, which in turn, requires all the controllers to
reconfigure their switches in a synchronized way.

However, these tasks can be significantly complicated by
asynchrony in communications and instability of the data plane
states that are maintained at the controllers, as the controllers
can undergo physical device or link failures, software or
configuration malfunctions as well as highly unbalanced traffic
load. When different controllers perform a series of reconfigu-
rations at runtime, the data plane states become uncontrollable
if the transient states occur in reconfiguring. Such a issue
can trigger further issues such as service unavailability, flow
interruption and security holes. These latter problems have
also challenged the current Internet routers[5][6], critically
impacting on the service availability in a similar way caused by
the asynchrony of data plane states, e.g. a research has shown
that the transient unavailability of ASes in BGP contributes to
90% packet loss in a Sprint network study[7].

In addition, considering when multiple services running in
DCP, each service has to deal with these challenges in order to
achieve the consistency of control and data plane states, thus
duplicate efforts are spent to solving the same problem. It is
desirable that the controller can provide the common functions
to these services and the services can share certain common
modules with each other. These functions are specialized to
dealing with the physical conditions.

The state-of-the-art of the SDN controller functions is
far from sufficient in offering efficient methods to deal
with the aforementioned underlying challenges with decreased
complexities[8][9][3][10], which limits programmability of
DCP in supporting novel network services.

The reconfigurability and reusability are two properties of
DCP that we propose to address the complexity in program-
ming a network. Specifically, DCP will be able to achieve the
reconfigurability of the data plane states and the reusability
of the control states of many services. In this paper, we
introduce the concepts of reconfigurability and reusability, the
principles they enable to control the programming process, and
an abstract architectural solution named as a proGRAmming
Control (GRACE) layer to facility the programming tasks in
DCP.

Moreover, we use two cases, namely, the Information-

IEEE ICC 2014 - Next-Generation Networking Symposium

978-1-4799-2003-7/14/$31.00 ©2014 IEEE 3051

Centric Networking (ICN)[11] and the Content Distribution
Networks (CDN)[12], together with the DCP inter-domain
control protocol to demonstrate these concepts and our solution
at work. The two properties realized in the GRACE layer can
improve the performance of the network controls services.

The main focus of the paper is to demonstrate that pro-
gramming a network can be easier with the support of recon-
figurability and reusability. Specifically, the paper contributes
in three aspects:

(1) For the first time in literature, the detailed definitions
of reconfigurability and reusability for the DCP are given,
along with the requirements in achieving the goals when
developing corresponding technical solutions. The paper also
reasons over the importance of the two features to the network
programmability.

(2) An abstract framework of the GRACE layer is giv-
en. GRACE holds the implementation of the protocols that
achieve the reconfigurability and reusability. It sits between
the service logic layer and the OpenFlow protocol[13] of
the controller. The protocols implemented within GRACE
handle the aforementioned asynchrony and instability during
the dynamics process of updating the distributed data plane
states. Leveraging main focus of the paper, the descriptions
about these protocols and GRACE stay at a conceptual level
with only a little detail.

(3) Two network service examples are analyzed for bet-
ter illustrations of how to program using distributed control
in SDN with the support of the GRACE layer. Both NS3
simulation[14] and PlanetLab[15] emulation results are given
to show the performance gain. Specifically, ICN showcases
both the reconfigurability and reusability; and CDN showcases
reusability. Both of them produce reduced delay in harsh
network conditions.

These contents are organized as follows. The two key prop-
erties of network programmability of the distributed control
plane and the GRACE layer are introduced in Section II. The
examples using GRACE layer are analyzed in Section III. And
Section IV gives the evaluations in both NS3 ndnSim and
PlanetLab in. Section V and VI discuss the related work and
conclude the paper, respectively.

II. NETWORK PROGRAMMABILITY

In this section, we first introduce the two major features of
network programming, namely, reconfigurability and reusabil-
ity, and then briefly describe the GRACE layer to implement
these features.

A. Reconfigurability of Data Plane States
The reconfigurability is the ability to safely update the

current forwarding states at the data plane to the new states,
without interrupting the data flows. During the update period,
one or multiple controllers write to the forwarding states of
their switches via the OpenFlow (OF) protocol. The forwarding
states control the different switch resources to decide the
output behaviors of the incoming packets at the switch level.
Examples include the forwarding rules in the flow table, the
rate limiting on the input queues as well as up and down
statuses of the ports.

During the updating process, the service availability could
be disrupted due to the losses of the in-flight packets. Because,
when some switches current forwarding states are changed
to the new states, the others may be not yet, generating the

Fig. 1. Network Model of Distributed Control in SDN

transient state problem. Such hardness increases the complex-
ities in developing a safe service on DCP, and deteriorates the
flexibility in its programmability.

The transient state problem is generic for different types
of services, to avoid the inconsistency of updating the data
plane states. The problem can be specified as Eq.1. The set of
{S1, S2, Sn}lt is a collection of all the forwarding states of a
service that is running on the controllers at the logical time lt.
Given two logical times in a continuous control sequence as
lt1 and lt2, an update to one of Si leading to state deviation
between two logical times. The transient states are defined as
the intermediate state sequences when there are at least two
state deviations. Thus, the dynamic reconfiguration process.

(S1, S2, ..., Sn)lt −→ (S∗
1 , S

∗
2 , ..., S

∗
n)lt+1 (1)

Taken routing and firewall as examples (the service A and
B in Fig.1). For the routing service, suppose initial path from
C to E goes through D. When the latency of link CE reduces to
a point that the controllers 2, 3 and 4 agree to the new route of
CE directly. The old route of CE is via D. (CE is denoted as the
red bold link in Fig. 1), The forwarding states of switches C,
D and E will be reconfigured by their controllers. If the three
switches are not updated at the same time, then either loop will
form if the switch C is updated earlier than D and E (in-flight
packets will be dropped when TTL drops to zero); or black
hole will form at node D when switch D is updated earlier than
C (the link DE is removed causing in-flight packet drops). For
the firewall service, suppose an operator reconfigure the filters
of D and E to discard all packets from C. When D is updated
earlier than E, the old forwarding states of E could still let
packets pass via E and then reach to D. The configuration is
not safe.

The impacts of the above examples are on service avail-
ability and security. However, the root cause is the same, the
transient state problem of the data plane. From the examples,
the transient state problem can be solved by enabling the
reconfigurability of data plane states

The goal of the proposed reconfigurability property is to
ensure safe updates on the data plane states, i.e, to solve
the transient state problem. Thus, when controllers are pro-
grammed to support a higher-level service logic, the lower-
level logics of network control should have the ability to
guarantee that the service will see the consistent data plane
states. More precisely, the technical solution that offers re-
configurability should conceal the asynchrony of data plane,
but deliver consistent states. Our approach is to build the
GRACE layer with the reconfiguration primitive in dealing
with the transient state.

B. Reusability of Control States
The reusability is the ability that two or more services

share common control states. In DCP, the control states are

IEEE ICC 2014 - Next-Generation Networking Symposium

3052

Fig. 2. Programming in DCP

maintained at the controllers. They are used by each controller
for two purposes: (i) to configure the forwarding states of
switches in its domain; and (ii) to coordinate with other
controllers to perform service logics.

Usually, the control states of a service are isolated from the
control states of the others. Two artifacts are generated: one is
that each service will need to have their own functionality to
deal with issues relating to the control states, and the other
is that when one service pushes the network conditions to
change, other services are not able to learn until a performance
bottleneck occurs.

As such, allowing a service to reuse the control state of
another service should be able to improve the programmability
in that, exposing the network control state for others to use
helps the performance of the other service. They can optimize
their traffic based on the control dynamics, e.g. path congestion
states in a routing service. As such, the accessibility of the
control states must be carefully managed.

Our approach to achieve the reusability is to push the
control states into the GRACE layer with two access models,
namely, active or passive access respectively.

C. Programmability with Distributed Network Control
We use Fig.2 to illustrate that the two tasks of network

programming can be easier using the reconfigurability and
reusability. Two services A and B are depicted in the figure,
each showing the control plane and the data plane. The service
states are the combination of the data plane states and the
control states. The control plane decides the new control states
and then configures the switches in its domain with the new
states.

With Service B, we demonstrate two programming cases
that call for the reconfigurability. Fig.2 shows the state changes
in a two dimension coordinate system. Along the x-axis, the
control states of the service B transit from S0 to S3 in time
epochs, eventually reach a complete state when the control
states at all the controllers are all updated to the new service
logic. During this time series, the reconfigurability ensures
that the corresponding forwarding states reach consistence
on the same values too. Fig.2 also shows an external event
which triggers the service B to update the forwarding states
at the data plane, transiting from S3 to S4 (show at y-axis).
The safe transition between the two states is ensured by the
reconfiguration primitive which is implemented in the GRACE
layer (see Subsection II.D).

In Fig.2, service A is used to show how service B can
reuse the states of service A. The most common example is for
service B to reuse the control states of network topology from
service A while its control states change, supposing service
A has implemented the reconfigurability and reusability, and
offers interfaces for others to access.

Fig. 3. High-Level Architecture of GRACE Layer

D. GRACE Layer
Fig.3 shows the high-level architecture of the GRACE

layer. The layer sits between the OpenFlow protocol stack
and the distributed services. The stack provides the function
to encapsule OpenFlow messages and is already implemented
by the NOX controller[8]. The layer can control the switches
in the current domain via the stack according to the service
logics (see the arrow between the OpenFlow protocol stack and
the GRACE layer in Fig.3). The two layers on two different
controllers can synchronize their control states with each other
(see the arrow between controllers A and B in Fig.3).

The layer implements mechanisms for the reconfigurability
to achieve the consistency in handling the deviations of data
plane states between the two data plane configurations. It also
implements mechanisms for the reusability to safely open the
access of the control states of a service to other services.
The core primitives are provided by the GRACE layer to
allow the services to access these mechanisms (see two arrows
between distributed services and OpenFlow protocol stack in
Fig.3). They conceal the complexity of the technical details
in handling the dynamics and synchronization of the control
states and data plane states during service runtime. The two
interfaces are briefed below.

The reconfiguration primitive is used to update the for-
warding states of the data plane. The execution of the primitive
generates strictly locked phases of the reconfiguration process.
There are four phases. The first phase takes indication from
the service about the (yet-to-be-committed) new forwarding
states. The second phase collects consensus to see whether all
the controllers have the same new forwarding states and be
ready for next phase. In the phase, all the controllers consent
on a global tag by using the Paxos algorithm[16]. Then, all the
controllers write the new forwarding states to the switches via
the OF protocol. The final phase collects confirmations from
all the controllers about the completion of the updates.

The state reuse primitive opens and manages the access
of the control states of the current service to other services.
To achieve that, the control states of a service are read-only
for other services. The different services isolate their control

IEEE ICC 2014 - Next-Generation Networking Symposium

3053

states with each other to avoid the state collisions. Further, all
the control states of a service are organized using Chord (a
distributed hashing table (DHT)[17]). The control states are
stored as key-value pairs on the DHT nodes. The DHT is
modified to add the updating triggers for active access. When
a service wishes to reuse the control states of another service,
it registers to the trigger of the control states of interest via the
primitive interface. When a change occurs to the control state,
message will send to the controller of the current service about
the latest values of the control state. For example, instead of
building a congestion module of its own, a service can learn the
changes of congestion levels by simply reusing the topology
states or the routing states of another service via the primitive.

III. CASE ANALYSIS

In the previous section, we have introduced how the
reconfiguration primitive and the state reuse primitive can help
programming a network with ease. In this section, we analyze
two popular network service examples with their programming
implementations in DCP. We use them to demonstrate the
benefits of the reconfigurability and reusability supported by
the GRACE layer. These two cases will reuse the control states
of the inter-domain routing service (IDR), which is developed
for controller communications. We start with introducing the
routing service IDR.

A. Inter-Domain Routing
The Inter-Domain Routing (IDR) in this paper is spe-

cially developed for controlling of the data forwarding be-
tween domains. The IDR can be seen as a type of the
link state routing service. It adopts the idea of consistency-
based link state routing, which has shown better flexibility
than the common dynamic routing approach in the Internet
architecture[2][18][3][4]. IDR builds on the state reuse primi-
tives of the programming control layer. So it computes routes
to reach other domains based on the consistent states of the
network topology. As shown in Fig.1, the red dash lines form
the topology of the controllers.

IDR takes three steps to converge to new routes in the
distributed manner: (1) Each controller obtains and aggregates
the switch states in its domain, integrates them into the global
topology states; (2) Each controller uses Paxos[16] to obtain
consensus on the consistence of topology states and then
uses Dijkstra algorithm to compute the domain level routing
path (the intra-domain routes are computed by the routing
service in the original controller realization); and (3) The
leader controller calls the reconfiguration primitive to update
the new behavioral states of its switches. Thus, this step can
be safely executed without the transient state problem via the
primitive (see Subsection II.D). In addition, if the topology
states are changed, such as the link congested, every controllers
re-executes the steps 2 and 3.

B. Information-Centric Networking
ICN enables the information providers to deliver contents at

subscribers requests by receiving senders Interest packets[11].
The forwarding information bases (FIBs) of the ICN at the
switches are used to forward the Interest packets by the content
prefixes. FIBs are computed by the content routing in ICN. The
routing is realized in the service logic layer to compute the best
routes to the content prefixes. When a switch has the content
that is requested by an Interest packet, its corresponding data
packets will reversely traverse the path where the Interest

���

���

���

���

����

�� ��� ��� �	� ��� ���

�
�
�
��
���
�
��
��
��
��
�

�������������

(a) Interest delay

����

����

���	

����

����

�� ��� ��� �	� ���

�
���
�
��
��

�������������

(b) hit ratio

Fig. 4. Interest Delay and Hit Ratio for the ICN Nodes Impacted by Link
Congestions

packet comes from. The data content are cached at each switch
by the least recently used (LRU). The state-of-the-art ICN
routing logics are realized in the global fashion: (i) Each
controller disseminates its content prefixes as the control states
to others in a periodical manner for the consistence of content
states (i.e. the control state); (ii) Each controller compute the
best paths to the content prefix from the current node using the
shortest path first algorithm; and (iii) Each controller updates
the behavioral states of switches by the FIBs. However, the
content routes need to be changed in time to avoid congestion.
The artifact can be observed for the route changes in ICN.
When the Interest packets with different prefixes are densely
flooded into all switches by a leaf switch, the performance of
ICN will be deteriorated, because hit ratio of caching is largely
dropped and queues are congested.

We simulate the ICN with NS3 ndnSim[14]. Our simu-
lation is to investigate how well the ICN switches react to
the congestion events (the simulation setups can be found
in Sec IV.A). The sending rate is exponentially distributed
within 0-1000req/s. We observed that there is a sharp increase
of delay at the execution time of 9 second (see Fig.4(a)),
correspondingly, there is a sharp decrease of the content hit
ratio starting at the 9 second (see Fig.4(b)). This is because
that after 9 seconds of execution, the content storages of the
switches are unable to cache further data records, which causes
either Interests loss, or longer paths to retrieve contents after
more Interests propagations.

In terms of ICN control logic, the large amount of content
requests changed the states of underlying links into congestion.
Because the content routing protocol measures the states and
computes new routing paths by converging steps, it is hard
for the control logic to capture the highly dynamic link
congestions. In addition, changing routing paths also drives
the ICN control logic into the transient states, which decreases
the availability of the ICN service. In addition, the routing
convergence will cause the service flows of ICN will be
interrupted in reconfiguring the data plane states. Because the
asynchrony of the data plane states is still existed in multiple
nodes.

To deal with such problem, we implemented the ICN con-
trol logic with the support of GRACE layer. ICN routing can

IEEE ICC 2014 - Next-Generation Networking Symposium

3054

reuse IDRs topology states, thus the routing can be converged
quickly in reacting to congestions changes. When the FIBs
are changed by new routes, the reconfiguration primitive is
triggered by such updating event to safely deal with changes
of behavioral states of FIBs without the impact of transient
states (see Subsection II.D).

We will show results in Section IV where the quality of
the ICN control and the ICN performance are improved.

C. Content Distribution Networks
CDN is consisted of a centralized CDN content publisher to

manage content replicas, and many CDN content distributors to
distribute the contents[12]. It offers better scalability by deliv-
ering replica from locations closet to the requesting end users.
However, the performance of the current CDNs is impacted by
the dynamics of the networks as well as the complexities of
the topology discovery and the routing. Such that, delivering
the SLA (Service Level Agreement) assured CDN flows (such
as delay upper bound) can be difficult. One current solution is
to integrate CDN with ALTO/P4P[19], so that the CDN can
choose the best distributor for the users. However, the current
approaches on ALTO still have the fundamental limitations:
The network topology cannot be accurately estimated with
ease from the application layer[19]. And routing is hard to
be optimally decided based on the topology. With CDN, the
GRACE layer can safely provide a way to reuse the IDRs
routing states (see Subsection II.D). With the network control
states information, CDN application can improve its estimation
and calculate the best routing path.

D. Case Summary
In summary, IDR, ICN and CDN showcase our approach

to improve the programmability with DCP. They show the
usefulness in optimizing the application performance with
the reconfigurability of the switch states and the reusability
of the control states. Specifically, IDR and ICN reconfigure
the behavioral states of the forwarding rules in their FIBs
according to underlying topology changes by reusing the
topology states. As shown in Fig.5, three services of IDR,
ICN and CDN are shown. The circles in each service are the
functions of the control planes belonging to the service. The
write and blue rectangles in each service are the control states
and data plane states of the service. The dashed red arrows are
the reuse dependences of control states for the three services.
IDR exposes the topology states and routing states that are
reusable for ICN and CDN (see Subsections III.B and III.C).
ICN and CDN can adjust their network control objectives
according to changes of the control states of IDR. Specifically,
ICN reconfigures its data plane states if the IDRs topology
states reveal that a link is congested. And CDN updates its
content routing if the states show that the routing states are
changed. The blue arrows are the concrete execution steps
of the control functions. The reconfiguration and reuse are
alternatively executed for each service to achieve its control
objective. In later section, we will show both have better
performance.

IV. PERFORMANCE EVALUATION

In this section, we show that the GRACE layer improves
the performance of both ICN and CDN when they undergo
network congestion events which force them to update the
forwarding states in the data plane. Such improvement is
brought by the control flexibility of DCP enabled by the layer.

Fig. 5. Example of Reconfiguration and Reuse of Control states

A. Performance Evaluation of ICN
We evaluate ICN to show: (1) the reconfigurability of the

control states safely transit states of the data plane at run time;
and (2) the reusability improves performance by being aware of
changes of topology states. The prototype of the ICN running
on the GRACE layer is experimented in simulation by the NS3
ndnSim[14].

We use a synthesis network topology with 200 nodes
generated by BRITE in which we uses the Waxman (α =
0.5, β = 0.8) model and the bandwidth is uniformly distributed
between 100Mbps to 1000Mbps[20]. The topology has 200
nodes and 99 of them are leaf nodes. In simulation, there
are two content origins for ICN: (1) a testing content that is
requested by all the 99 leaf nodes with a frequency uniformly
distributed within 0-1000 req/s and runs in 0-60s; and (2)
a background content that is requested by all nodes in the
topology from 0-30s with a frequency exponentially distributed
within 0-1000 req/s. Each testing request for each leaf node is
sent with its unique prefix of leaf name and packet sequence
number. The starting and stopping times of the background
content are the ON/OFF model with period of 2s. Each node
contains a distributed SDN controller that runs ICN over the
GRACE layer and an ICN switch.

The simulation results are given in Fig.6. They show that
when the ICN network is congested by heavy Interest flows
(i.e. 0-30s), the data plane states can stabilize quickly in the
presence of rapid changing congestion conditions at different
links, which reduces the propagation latency of the Interest
packets. It is because of the reuse of the control states of IDR.
Fig.6(e) shows an 5% increase the hit ratio of the content
storage on the average for all Interest requests of all nodes
(see Fig.6(b)). However, when we randomly choose 30 nodes
(see Fig.6(f) and Fig.6(g)), the results show that the ratio of
highly fluctuation reduces, which suggests that the hit ratios of
the ICN on GRACE are more stabilized than the one without
GRACE under the highly dynamic congestion cases. Also,
Fig.6(a) and Fig.6(c) show that the Interest delays reduced
19.6% on average. Further, the data delay with GRACE is more
stabilized than the one without GRACE, which is indicated by
the fact that mean of the standard deviation of the request
delays is lowered by 17.1% than the results taking average of
all paths (see Fig.6(a) and 6(d)). This is because nodes of ICN
rapidly react to the congestions and reconfigure its control.

B. Performance Evaluation of CDN
We show that the CDN running on the GRACE layer can

improve performance of routing control through evaluation on
PlanetLab. The prototype of the CDN on GRACE is based on
CoralCDN[12].

We choose uniform distribution because it is sufficient for our evaluation
purpose. We consider using more realistic distributions in the future work.

IEEE ICC 2014 - Next-Generation Networking Symposium

3055

��

��
��

��

���

���

�� ��� ��� �	� ��� ���

�
�
��

�!
�
��
���
��
�

�������������

���"��#$
%��&�"��#$

(a) mean delays of Interest packets

�����

�����

�����

����

�����

�� ��� ��� �	� ���

�
���
�
��
��
���
��
��
�
�

�������������

���"��#$
%��&�"��#$

(b) mean hit ratios for all nodes

��

����

����

����

����

��

�����' ��(��' ��'��' �	���'

)
��
*�

*�
���
�

!�������+�

���"��#$
%��&�"��#$

(c) ECDF of delay means

��

����

����

����

����

��

�(�'� ����'� ����'� ��'�'�

)
��
*�
*�
���
�

!�������+�

���"��#$
%��&�"��#$

(d) ECDF of delay std.

��

���

���

���

�� ��� ��� ��� �	� �	� ��� ��� ��� ���

�
�
��

�!
�
��
���
��
�

�������������

���"��#$
%��&�"��#$

(e) Interest delays for each switch

��

����

����

����

����

�� �� ��� ��� ��� �	� �	� ��� ��� ���

�
���
�
��
��
���
��
��
�
�

�������������

(f) hit ratios with GRACE layer

��

����

����

����

����

�� �� ��� ��� ��� �	� �	� ��� ��� ���

�
���
�
��
��
���
��
��
�
�

�������������

(g) hit ratios without GRACE layer

Fig. 6. Data Delays and Hit Ratios for ICN Networks(All links are Impacted by Heavy Interest Packets)

To evaluate the CDN performance, we randomly choose
9 nodes from PlanetLab that emulates a physical network
topology based on Minimum Spanning Tree (MST) using the
average link costs 5 times more than the measured TCP latency
(see Fig.7). In the topology, there are three distributors of
CDN, namely, PL2-AUKLAND, PL5-UCSE and PL0-JAIST,
one content requester at PL4-UCSB and one node for content
routing at PL1-WASEDA. To emulate a network with the
highly fluctuated latencies, the links in the paths between
the distributors and the requester are mixed with two types
of traffic to create the control dynamics: the first type is a
dense Poisson traffic with throughput of 1000 req/s to emulate
the CDN requests, and the second is the real background
traffic of the PlanetLab, which will interfere with large latency
fluctuations, to emulate parallelized service traffics. Some
measurements of the underlying testbed are: (1) high packet
loss rate is observed in that 15% of the links have a loss rate
more than 10%; and (2) high latency deviation is observed in
that 3.7% of the links have the latencies more than 1000ms.
And each node contains a controller and a switch.

The emulation results are given In in Fig.8. The large delay
gap between the two CDNs (with and without the GRACE
layer) during 0-599s is mainly caused by higher fluctuations
of the PlanetLab background traffic; while the smaller delay
gap between the two lines during 600-2000s is mainly caused
by the more stable Poisson background traffic. We observed
that the content request delay is much lower and more stable
when the GRACE layer is used. The delay is also within the
acceptable range, according to Fig.8, the mean value and the
standard deviation are 386ms and 329ms, respectively. In con-
trast, a native deployment of CDN (without the GRACE layer)

Fig. 7. Emulation Topology of CDN

��

�����

�����

�'���

�(���

�� ���� ���� �'�� ����� ����� ����� ��'�� �����

!
�
��
���
��
�

�������������

���"��#$
%��&�"��#$

Fig. 8. Content Delays for CDN Nodes on PlanetLab Impacted by Highly
Fluctuated Congestion States of Links

produces the mean and the standard deviation to be 2033ms
and 2105ms, respectively. Once the users sending requests, the
three paths are efficiently decided for the distributors by the
routing state that are consistent among them, so the optimal
path decision is then delivered to the users. Overall, the layer
reduces 81% average request delay of CDN. It indicates that
the reusability of topology states cab help CDN to optimize
its control performance.

V. RELATED WORK

Recent work on the programmability of the SDN con
trollers have three major trends: (1) The approaches of the
centralized network control like the OpenFlow/SDN paradigm

IEEE ICC 2014 - Next-Generation Networking Symposium

3056

work on the programmability of a single SDN controller,
including creating a SDN programming language to lower
the complexities of the switch configuration like NetCore[21]
and the incremental consistent update[22]. However, the pro-
grammability of distributed controls is not concerned.

(2) The approaches of patching on the current distributed
control protocols improve the programmability for a specific
protocol. In detail, the works like those in RCP[2], 4D[18] and
the consensus routing[5] improve the performance of BGP by
turning the dynamic route computation fashion of the inter-AS
routing into the distributed system centric one. The consensus
routing focuses on minimizing the transient unavailability of
ASes in BGP. Most prior works[23][24] for the Internet control
focused on protocol specific approaches of adjusting network
metrics. And a work[25] proposes a method that seamlessly
migrates one configuration of intra domain routing to another
with routing stability. However, these work all lacks of an
architectural solution to improve the programmability of all
kinds of services.

And (3) a few work has addressed the programmability
via distributed control in OF/SDN[3][4][26][10], adopting the
distributed system oriented control with better flexibility than
the dynamic routing control[2][5][18]. Onix realizes the pro-
grammable control platform to support the diverse network
services like DCN and IP routers etc. by treating the network-
ing problems as the distributed system problems[3]. However,
the dynamic programming process is not controlled for the
services of DCP, thus decreasing the service availability; in
addition, the distributed services cannot share their control
states to lower their design complexities.

Hence, none of these researches addresses programmability
of the distributed network control via enabling the reconfig-
urability of the data plane states and the reusability of control
states. Our work brings new direction of research.

VI. CONCLUSION

In this paper, we introduced two core features, the re-
configurability of data plane states and the reusability of the
service control states, to reduce the complexity of design,
implementation and update forwarding states in handling phys-
ical network dynamics in DCP. The two features are realized
in the GRACE layer. Our case analysis demonstrated how
to program a network service using the two features. The
simulation and emulation results further validate the benefits
of having reconfigurability and reusability by showing perfor-
mance gains under harsh conditions. Together, they offer in-
depth understandings on the two concepts and their usefulness
for future Internet design.

ACKNOWLEDGMENT

This work is supported by the National Basic Research
Program of China (973 Program) (2012CB315903), the Key
Science and Technology Innovation Team Project of Zhejiang
Province (2011R50010-05) and the National Natural Science
Foundation of China (61379118 and 61103200). This work is
sponsored by the Research Fund of ZTE Corporation, and also
supported in part by the BBN/NSF Project 1783.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan et al., “Openflow: enabling
innovation in campus networks,” ACM SIGCOMM Computer Commu-
nication Review, vol. 38, no. 2, pp. 69–74, 2008.

[2] N. Feamster, H. Balakrishnan, J. Rexford et al., “The case for separating
routing from routers,” in SIGCOMM, 2004.

[3] T. Koponen, M. Casado, N. Gude et al., “Onix: A distributed control
platform for large-scale production networks,” OSDI, 2010.

[4] C. Rothenberg, M. Nascimento, M. Salvador, C. Corrêa, S. Cunha de
Lucena, and R. Raszuk, “Revisiting routing control platforms with the
eyes and muscles of software-defined networking,” in SIGCOMM, 2012.

[5] J. John, E. Katz-Bassett, A. Krishnamurthy, T. Anderson, and
A. Venkataramani, “Consensus routing: The internet as a distributed
system,” in USENIX, 2008.

[6] L. Vanbever, S. Vissicchio, C. Pelsser et al., “Lossless migrations of
link-state igps,” IEEE/ACM Transactions on Networking, vol. 20, no. 6,
pp. 1842–1855, 2012.

[7] U. Hengartner, S. Moon, R. Mortier, and C. Diot, “Detection and
analysis of routing loops in packet traces,” in Proceedings of the 2nd
ACM SIGCOMM Workshop on Internet measurment. ACM, 2002, pp.
107–112.

[8] N. Gude, T. Koponen, J. Pettit et al., “Nox: towards an operating system
for networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 3, pp. 105–110, 2008.

[9] D. Erickson, “The beacon openflow controller,” in ACM SIGCOMM
Workshop on HotSDN, 2013.

[10] P. Lin, J. Bi, and H. Hu, “Asic: an architecture for scalable intra-domain
control in openflow,” in Proceedings of the 7th International Conference
on Future Internet Technologies. ACM, 2012, pp. 21–26.

[11] V. Jacobson, D. K. Smetters, J. D. Thornton et al., “Networking
named content,” in Proceedings of the 5th International Conference
on Emerging Networking Experiments and Technologies, 2009.

[12] M. J. Freedman, “Experiences with coralcdn: A five-year operational
view,” in USENIX NSDI. USENIX Association, 2010, pp. 7–7.

[13] “Openflow switch specification, version 1.4.0,” Open Networking Foun-
dation, http://www.opennetworking.org, 2013.

[14] A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnsim: Ndn simulator for
ns-3,” Univ. of California, Los Angeles, Tech. Rep., 2012.

[15] B. Chun, D. Culler, T. Roscoe et al., “Planetlab: an overlay testbed for
broad-coverage services,” ACM SIGCOMM Computer Communication
Review, vol. 33, no. 3, pp. 3–12, 2003.

[16] L. Lamport, “Byzantizing paxos by refinement,” in Distributed Com-
puting. Springer, 2011, pp. 211–224.

[17] I. Stoica, R. Morris, D. Karger et al., “Chord: A scalable peer-to-peer
lookup service for internet applications,” in ACM SIGCOMM, 2001.

[18] A. Greenberg, G. Hjalmtysson, D. Maltz et al., “A clean slate 4d
approach to network control and management,” ACM SIGCOMM Com-
puter Communication Review, vol. 35, no. 5, pp. 41–54, 2005.

[19] V. Gurbani, V. Hilt, I. Rimac, M. Tomsu, and E. Marocco, “A survey of
research on the application-layer traffic optimization problem and the
need for layer cooperation,” IEEE Communication Magazine, vol. 47,
no. 8, pp. 107–112, 2009.

[20] A. Medina, A. Lakhina, I. Matta et al., “Brite: An approach to universal
topology generation,” in MASCOTS 2001. IEEE, 2001, pp. 346–353.

[21] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and
run-time system for network programming languages,” in SIGPLAN,
vol. 47, no. 1. ACM, 2012, pp. 217–230.

[22] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,”
in Proceedings of the second ACM SIGCOMM workshop on Hot topics
in software defined networking. ACM, 2013, pp. 49–54.

[23] P. Francois, M. Shand, and O. Bonaventure, “Disruption free topology
reconfiguration in ospf networks,” in INFOCOM. IEEE, 2007, pp.
89–97.

[24] S. Raza, Y. Zhu, and C.-N. Chuah, “Graceful network state migrations,”
IEEE/ACM Transactions on Networking (TON), vol. 19, no. 4, pp.
1097–1110, 2011.

[25] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and O. Bonaventure,
“Seamless network-wide igp migrations,” in SIGCOMM, 2011.

[26] D. Levin, A. Wundsam, B. Heller et al., “Logically centralized?: state
distribution trade-offs in software defined networks,” in SIGCOMM,
2012.

IEEE ICC 2014 - Next-Generation Networking Symposium

3057

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

