
Prototype for Customized Multicast Services in

Software Defined Networks
1
Shengquan Liao,

2
Xiaoyan Hong,

1
Chunming Wu,

1
Bin Wang and

3
Ming Jiang

1. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China

2. Department of Computer Science, the University of Alabama, Tuscaloosa 35487, USA

3. College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China

 shengquan-liao@163.com, hxy@cs.ua.edu, {wuchunming, bin_wang}@zju.edu.cn and jmzju@163.com

Abstract1— Multicast, transmitting packets from one source

to a group of destinations, is a popular service in Internet and

now in the datacenter network. However, a unified multicast

algorithm cannot satisfy the diverse performance requirements

from different users. Hence customized multicast services are

proposed in software defined networks (SDN) in this paper. We

tackle a few associated technical challenges, and introduce a

prototype with OpenFlow1.3 and RYU controller. Our

contributions are: (1) we present the modules in detail and

explain why they are demanded to implement multicast services

in SDN, independent of current Internet-based IGMP protocols

and the multicast address; (2) our prototype could sliced

multicast trees in the substrate network in accordance to

different embedded multicast algorithms; (3) the last hop

translation is proposed in access switches to guarantee the

multicast flow to be forwarded through the calculated multicast

tree and be consumed in end points. Simulation experiments

evaluate these performances. And two applications (namely,

multicast text transfer service and streaming media application)

further validate the feasibility and operability of our customized

prototype for multicast services in the real world.

Keywords—Multicast Service; OpenFlow; SDN

I. INTRODUCTION

 Multicast, transmitting packets from one source to a group
of destinations, is a popular communication service in Internet
and now also wildly used in datacenter center networks,
supporting applications from file replication to cooperative
computations [1]. Furthermore, different applications usually
vary a lot in performance requirements, for example, a bank’s
replication system particularly emphasizes the security issue,
while some cooperative computations concern about the delay
constraint. A unified multicast algorithm (i.e. RPF algorithm in
DVMRP) can hardly satisfy all of these diverse performance
requirements. Taking the RPF algorithm as an example, the
algorithm can calculate a multicast tree using link delay as
its cost to address the delay constraint, but RPF can not
directly used for security guarantee.

 The increasing deployment of software defined networking
technology (SDN) brings new opportunities in providing
customized multicast services to satisfy the diversified
requirements through the network programmability it enables
[2]. A customized multicast service should allow users to load
different multicast routing algorithms for optimizing their own
service performances. For instance, the bank’s multicast
replication system can use a separate secure-enhanced

1 The correspondent author is Prof. Chunming Wu.

multicast algorithm, while the cooperative computation uses
RPF with delay constraint. In this case, two separate multicast
protocols are needed. On the other hand, with SDN, we
envision that a customized multicast service can support
multiple performance requirements from different users by
hosting different multicast protocols.

 Usually, the multicast service requires the coordination of a
set of distributed protocols, e.g. IGMP, DVMRP, and PIM.
Typically, the hosts join or leave a multicast group, which is
identified using a multicast address, by sending IGMP
messages to its directly attached multicast router. Meanwhile,
the router listens to IGMP messages, and periodically sends out
queries to discover which groups are active or inactive on a
particular subnet. Furthermore, DVMRP or PIM runs more
complicated processes on routers (i.e. exchange multicast
routing table, modify the multicast routing entries, etc.) to
construct a source-based tree or group-based tree for sending
multicast packets.

 In the SDN paradigm, the controller is responsible for
managing multicast groups, and calculating effective multicast
trees; while the data plane performs packet forwarding
according to the multicast trees. So the data plan keeps as
simple as possible. The OpenFlow specification 1.3 supports
multicast by issuing group commands to the substrate network
to construct multicast trees. The multicast data packets can be
forward to multiple ports by a single match in Flow Table.

 Some works have been proposed for multicast applications
using the SDN. However, their uses of IGMP overshadow the
performance of the solutions for the reason that extra overhead,
such as flow entries, is produced in OF-switches in order to
maintain paths for the proposed protocols. MultiFlow [3] has
shown that a direct Dijstra’s algorithm can converge quicker
than DVMPR in the periods of multicast tree construction, and
hence the latency could be greatly decreased. But its IGMP
Query packets need to be broadcasted in the substrate network
so that clients interested could join. Hence, the switches should
slice resources (i.e. TCAM, CPU or queue resources) to deal
with these queries or reply packets. The scheme of fast
rerouting controller [4] maintains a redundant multicast tree for
efficient retransmissions in case of failures. The multicast
addresses are replaced by the Ethernet address. It still uses
IGMP packets to probe whether a group member is active.
Finally, RYU [5] method to IGMP is letting a switch to operate
as a querier for acknowledging the multicast memberships, and
transfer the membership information to the multicast server via
a server port.

 However, it is not a trivial task to implement IGMP in the
relatively simple switch hardware in SDN [2]. The
aforementioned early implementation in RYU ports IGMP to
OF-switches, and the switches emulate the function of
multicast routers. Overhead, thus, is a big issue. For example,
the switches would load the forwarding entries to maintain
upstream and downstream paths for all of the registered hosts
and the multicast control packets in TCAM (Ternary Content
Addressable Memory) to accommodate the periodic IGMP
query messages. It is well known that the TCAM resource is
extremely limited in OF-switches. Without enough available
TCAM, in-coming packets may fail when looking up TCAM.
The hit ratio and hence the forwarding efficiency will thus be
reduced.

 The next problem is the multicast address. In OpenFlow1.3,
the multicast addresses are treated the same as the IP address,
i.e., they can be matched in the flow table and no multicast
semantic is attached. An action for a flow table entry can be
replicating and forwarding. Hence, we believe that we can use
a traditional IP address for multicasting the associated data
flows. This would reduce the complexity in handling multicast
address advertisement and dealing with the associated
topological challenges. This, in turn, can further optimize
multicast routing tree (i.e. aggregating FIB entries), and
improve the scalability of multicast groups in datacenter
network [6].

 Thus, we develop a prototype for customized multicast
services in SDN with OpenFlow1.3 on the top of RYU
controller. The platform consists of mechanisms for handling
membership, mechanisms for instantiating corresponding
multicast routing algorithms in substrate network. Moreover,
the platform has its own way of handling multicast forwarding,
and performance requirements.

 Our contributions are as follows:

(1) We present the modules in detail to implement
multicast services in SDN, independent of current
Internet-based IGMP protocols and the multicast
address. To be more important, we have explained why
our proposed modules are demanded in our prototype.

(2) To deal with different requirements in multicast
services, an interface for different multicast tree
construction algorithms is provided, and it could sliced
a multicast tree in accordance to the embedded
algorithms’ outputs.

(3) The last hop translation is proposed in senders’ and
receivers’ access switches to guarantee the multicast
flow to be forwarded through calculated multicast trees
and be consumed by end points. Furthermore, two
practical applications (namely, multicast text transfer
services and streaming media applications) are
designed to verify its feasibility and operability in real
world.

Our simulation experiments have validated that the flow
control mechanism in receiver proxy could work well and our
prototype can customize multicast services in accordance to the
plug-in algorithms. Besides, the running of multicast text
transfer and streaming media applications in our testbeds has

confirmed us the feasibility and operability of the last hop
translation.

 The remainder of this paper is organized as follows:
Section II describes the related work; the system architecture
is presented in Section III; Section IV gives simulation
experiments to evaluate the system performance; it is followed
by the two applications to verify the feasibility and operability
of our platform in Section V. Finally, we conclude our paper in
Section VI.

II. RELATED WORK

 In this section, we conclude works that involves multicast
services with OpenFlow. The recent published work (SDM [7])
has presented a software-defined multicast for streaming
videos on a generic network layer. Although it has the similar
architecture with our platform in SDNs, it does not present the
technical challenges (i.e. how to deal with ARP requests) in
detail and why their architecture is feasible and operable.
Furthermore, there is no module in their prototype for
customized performance optimization. Except for the SDM,
other works (i.e. OFM [8], CastFlow [9], XVLAN [10] and
Fast Rerouting Controller) all resolve to implement functions
of multicasts in SDNs or Overlay Networks. OFM and
CastFlow both have implemented multicasts in SDNs from a
clean-state perspective. They do not clearly show what is
utilized to label multicast groups and how the group members
receive the multicast flow. As the same as SDM, they both do
not design mechanisms to enhance performances. XVLAN is
proposed to manage IP groups. Although it can act the
functions of IGMP protocols, but it demands a dedicated
external server to resolve addresses in edge switches. Besides,
issues of the multicast tree construction and performance
optimization have not been attached. Contrary to XVLAN, Fast
Rerouting Controller focuses on programming two multicast
trees for efficient retransmissions, but directly uses the IGMP
protocol to manage group members. As has been mentioned
before, the decentralized IGMP protocol would bring extra
loads in switches.

III. THE SYSTEM ARCHITECTURE OF PROTOTYPE

 The proposed multicast service supports source-based trees
with address translations at the last hop. The architecture has
four components and it builds on top of two default APIs of
RYU, namely MPLS and Discovery, as shown in the red
rectangle in Fig.1.

 Overall (see Fig.1), discovery API offers the topology of
underlying infrastructure to the controller. The multicast
groups are maintained by Register. The controller calculates a
multicast tree using Plug-in Algorithm. Since the multicast
flows and unicast flows need to be distinguished in the
substrate network (i.e. Class A and D addresses in IP protocol)
and the multicast address is dropped in our prototypewe assign
an unique MPLS labels for each multicast group. This method
is largely inspired by the widespread utilization of MPLS to
identify different flows in the traffic engineering. The
Forwarding Translation is designed to deal with the address
issue in the last hop. In addition, the Receiver Proxy acts the
function of ARP proxy because sender or receivers would not

sent out UDP packets unless they receive some ARP replies in
TCP/IP protocol stacks. In addition, it also controls the
throughput in the multicast tree due to the bandwidth constraint
from bottleneck links. With the coordination of all these
modules, our prototype could provide customized multicast
services. Also, it can be seen from Fig.1 that each switch is
connected to the controller with a control channel (i.e. SSH
link) that bridges the two layers. Except for the OpenFlow1.3
commands, the bridge also deliveries all the packets exchanged
between the control and data planes.

Fig. 1 System Architecture of Our Prototype

The major components are introduced as follows:
 Register is responsible to manage multicast group
members. When receivers join or leave the multicast group,
this event will trigger the update of corresponding group
members and the reconfiguration of the multicast tree.
Whenever a sender is registered, this module will generate a
unique MPLS label (named with its IP and port) which names
the same as the ID of processes in Internet to guarantee its
uniqueness. If the sender logs off, all its correspondent
multicast trees and MPLS labels would be cancelled from the
physical network infrastructure.

 Receiver Proxy acts the functions of ARP proxy so that the
receivers or senders can sent out their UDP packets. Also, the
module controls the throughput in multicast tree due to the
bandwidth constraints from the bottleneck links. The flow
control can be implemented by adding Meter-Mod and Queue-
Mod commands in the corresponding action set.

 Plug-in Algorithm provides interfaces for users to load
self-defined multicast tree construction algorithms (i.e. KMB
[11] and Shortest Path Tree: SPT) on an up-to-date topology
supplied by Discovery API. With outputs of this embedded
algorithm, the controller generates flow tables, and sends them
to switches. Hence, the substrate network could customize
multicast tree in accordance to users’ algorithms.

 Forwarding Translation modifies flows in the last hop
switches (i.e. blue and purple switches in Fig.1), and hence
receivers could consume multicast flows. Initially, the original
UDP flow from the sender would be encapsulated with a
MPLS header in its access switch (i.e. the blue switch). Then
the flow with a unique MPLS header would be forwarded to

receivers through the calculated multicast paths. However,
these packets would be dropped in the network adapter because
of incorrect “Multicast Address” (MPLS). Hence the
Forwarding Translation also works in receivers’ access
switches (i.e. purple switches) to reform these packets with
new destination addresses (i.e. receivers’ own IP or MAC
address) so that group members can receive the multicast flow
as normal one. Although these works seems resource-
consuming, it just adds two actions in the action set mapped to
the related multicast groups. Most importantly, this module
does not increase the flow entries in OF-switches and do not
need the coordination of end points.

 Within our prototype, if a sender registers its role with a
message “(Sender: IP: port)” encapsulated in UDP packet, the
Register module would generate a correspondent MPLS label
with the registered IP and port of the sender. Then, the
controller broadcasts the MPLS to all of the hosts through
control channels. After that, whenever receivers choose to join
the multicast group by sending UDP message “(Join: IP:
MPLS)”, the controller calls plug-in multicast construction
algorithm to calculate paths for multicast services, and then
ports these calculated paths to OF-switches. When the sender
receives the signal that the building tree has been finished, it
would send multicast packets. Processed by the Receiver Proxy
and Forwarding Translation, the adjusted flow will be
forwarded through the instantiated multicast tree as the blue
paths in Fig.1, and received by registered group members. In
addition, the receiver’s leave messages “(Leave: IP: MPLS)”
would trigger the reconfiguration of the corresponding
multicast tree. The whole procedure can be seen in Fig.2.

Fig.2 The sequence diagraph of our prototype

IV. PERFORMANCE EVALUATION

 In this section, we first evaluate the efficiency of the flow
control mechanism in Receiver Proxy, and then validate that
our prototype can customize multicast services in accordance
to the embedded plug-in algorithms.

A. Simulation Environments

We use Mininet to generate the backbone of Internet2 [12]

(Fig.3) as our simulation topology. In the topology, each

switch is connected with two hosts numbering 2*dpid-1 and

2*dpid, respectively. The dpid is the ID of OF-switches in the

substrate network, and hosts are not shown in Fig.3 due to

RYU GUI tools.

 Fig.3 Simulation topology

 To test our flow control mechanism in Receiver Proxy, we
have defined a multicast group where h4 is the sender and {h1,
h6, h7, h13, h20} is the receiver set. Then we load an original
traffic in h4 with different thresholds, and observe the adjusted
flows in WireShark.

 Next, a Poisson process with an average 5 requests per
time unit is introduced to simulate a dynamic multicast
application scenario, where each request is composed with a
sender and a receiver set whose size is randomly picked from
the range of 2 to 10. In the simulation, we randomly generate
2500 groups of such multicast requests, and map them into the
substrate network as Fig.3. Hence, we can obtain service
performances in 500 time units with three comparisons
(MultiFlow, SPT and KMB). MultiFlow use a Dijstra’s
algorithm to program a multicast tree, and map the logical tree
in substrate network with OpenFlow1.0 commands. After that,
we replace the OpenFlow1.0 with OpenFlow1.3, and then
rename the MultiFlow as SPT. Furthermore, KMB is a scheme
which utilizes KMB to calculate multicast trees and instantiates
these trees via OpenFlow1.3 commands.

B. Metrics

 We have designed three metrics (network resource
consumption, average delay and standard deviation of delay) to
show that different multicast algorithms vary a lot in service
performances. The network resource consumption is the
biggest concern of ISPs, while delay and its standard deviation
are important parameters for users to reflect the service
performances.

1) Network resource consumption
 Our resource consumption is calculated with the following
equation [13]:

 ((t)) 0.5*CPU(n) 0.5*Link(l)m m mc G

 Here, for each request (t)mG , m = 1,…2500; the network

resource is calculated as a weighted sum over the nodes (nm
)

and links (lm
) of the mapped multicast tree in substrate

network. If the unit of allocated resource (i.e. CPU, TCAM) in
the OF-switch to maintain a flow entry is assigned to 1,

CPU(n)m
equals to the total number of switches within the

multicast tree. Likely, setting the unit of link bandwidth to

carry a multicast flow as 1, we can calculate Link(l)m
 by

summing up the number of ports of OF-switches involved in
the multicast tree.

2) Delay and its Standard Deviatation
 The average delay is calculated as the total delays of
multicast paths over the size of the receiver set. This parameter
can roughly evaluate the efficiency of multicast algorithms.
Standard deviation of delay is to measure the latency
differences of receivers, which can show the service
performance to some extent.

C. Simulation Results

1) Producer Flow Control Mechanism
 As had been mentioned before (see Sec. III), Receiver
Proxy has an additional function for the flow control. To
validate the efficiency of this mechanism, we load the sender
h4 the original traffic given in Fig.4a, graphed to show the
instantaneous throughput (Bytes/second) when time (in second)
goes by. Then we apply different thresholds to control the rate
of the multicast flow, and the results are shown in Fig.4b and
Fig.4c. It can be clearly seen that the traffic flows in Fig.4b and
Fig.4c with thresholds to be 5000 B/s and 1000 B/s
respectively do not exceed our predefined values in the most
interval of our time window (120s). Furthermore, Fig 4b has
higher throughput than Fig 4c. That is majorly because the
flow rate threshold in Fig.4b (5000 B/s) is bigger than that of
Fig.4c (1000 B/s). The results suggest that our producer flow
control mechanism in Receiver Proxy can effectively adjust the
traffic in the multicast tree with an imported threshold.

a. Original Multicast Traffic

b. Adjusted Multicast Flow with 5000 B/s

c. Adjusted Multicast Flow with 1000 B/s

Fig.4 Results of flow control

2) Performance Analysis
 Fig.5 illustrates that different multicast algorithms show
great differences in network resource consumption even for the
same request set. Although MultiFlow shares the same

multicast tree as SPT, it makes the switches manage more
MPLS labels (more entries in the flow table) due to its
independent identities for each source-destination path. That
contributes to more resource consumption for MultiFlow.
Furthermore, KMB optimizes the multicast tree with two
iterated Kruskal’s algorithm, and its tree would have less nodes
and links. Therefore, KMB demands least network resources
than MultiFlow and SPT to support the same request set.

0 50 100 150 200 250 300 350 400 450 500
5

10

15

20

25

30

35

Time Units (s)

N
e
tw

o
rk

 R
e
s
o
u
rc

e
 C

o
n
s
u
m

p
ti
o
n

MultiFlow

SPT

KMB

Fig.5 Network Resource Consumption of Dynamic Requests

0 50 100 150 200 250 300 350 400 450 500
10

15

20

25

30

35

40

Time (s)

A
v
e
ra

g
e
 d

e
la

y
 (

m
s
)

SPT

KMB
link delay=15ms

link delay=10ms

link delay=5ms

Fig.6 Average delays of Dynamic Requests

 Because MultiFlow and SPT program the same multicast
tree, they share the same value in average delay and standard
deviation. Thus, we only compare SPT with KMB. Fig.6
illustrates that the average delay of KMB is always smaller
than that of SPT in the cases for the link delay being 5ms,
10ms and 15ms, respectively. In contrast, KMB shows larger
standard deviation than SPT’s in Fig.7. This is because that the
optimization procedure of KMB resolves to reduce the total
hops in the multicast tree, but enlarge the differences of path
lengths at the same time.

3) Discussion
 In summary, the flow control mechanism can work well in
Receiver Proxy to adjust throughputs in the multicast tree, and
results of the second simulation confirm us that our prototype
for customized multicast services can isolate multicast tree in
the substrate network in accordance to plug-in algorithms.

Furthermore, different multicast algorithms vary a lot in
network resource consumption and service performances. It is
unrealistic to hold the assumption that an optimal multicast
algorithm can be designed to satisfy all of performance
requirements from users. For example, KMB algorithm cannot
always keep optimal performances in terms of average delay
and its standard deviation at the same time in comparison to
SPT. However, it is another way of saying that our platform is
able to load different multicast algorithm for provision of self-
customized multicast services, and our solution of such a
customized prototype is feasible and operable.

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Requests

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
(

)
o
f

D
e
la

y

KMB

SPT

 Fig.7 Standard Deviation of Dynamic Requests’ Delay

V. CASE STUDY

 The simulation experiments in last section has validated
that our framework for customized multicast services is
feasible and operable. In this section, two appropriate scenarios
are designed to illustrate that our system can support practical
applications: multicast text transfer and stream media services.
Multicast text transfer application shows that the text message
can be delivered in a multicast transmission to all its receivers
through the backbone network in Fig.3. The second experiment
confirms us that our last hop translation can process large
number of packets, since multicast stream media could run
smoothly in the edge network. These two experiments further
verify the feasibility and operability of our prototype in the real
world.

A. Multicast Text Transfer Application

 This experiment is designed to validate that our platform
can support multicast text transfer application in backbone
network. For that purpose, we generate two multicast groups in
the Internet2 topology (Fig.3), and map them onto the substrate
network under the architecture of our prototype. The sender of
the first group is h4 (IP: 10.0.0.4), and its receiver set is {h1,
h6, h13, h20}. With its sender being h8 (IP: 10.0.0.8), the
second receiver set is {h1, h10, h14, h20}. After that, we run
processes to send message “GROUP#1: INFO in the 1st
group!” in h4, and message “GROUP#2: INFO in the 2th
group!” in h8, 15 times respectively. It can be seen in the Fig. 8
that both receiver sets of Group #1 and Group #2 have received
the text message from their own multicast groups (10.0.0.4:
40452 and 10.0.0.8: 52728).

Fig. 8 Testbed running text transfer application

B. Multicast Streaming Media Application

PC-OVS (CPqD ofswitch13)
Sender

Receiver #1 Receiver #2

NetFPGA (1G)

Controller

Fig. 9 Topology of streaming media application

Fig.10 Testbed running streaming media application

 This experiment validates whether our last hop translation
module can process large number of packets through running
multicast stream media application. We build a testbed as show
in Fig.9, which is the edge network of topology shown in Fig.3.
The two receivers are mounted to a OF-switch (PC-OVS:
CPqD ofswitch13), and a sender send a multicast flow to them
through the switch. The controller has delivered the multicast
paths to the OF-switch. During the multicast transimission, the
switch should reform those multciast packets with Forwarding
Translation module for the two receivers. It is well known that
the packet flow rate of streaming media is big. That would
bring a greate chanllenge to our Forwarding Translation
module. At the beginning, when the NetFPGA is not accessed,
the OVS (Open Virtual Switch) drop a lot of packets. That may
be because our PC is not powerful, so that it cannot timely
process so many packets. Hence, the NetFPGA is introduced in
our testbed to undertake part of forwarding traslation (as seen

the blue flow) to reduce the load of OVS. The simulation result
is shown in Fig.10. The two hosts with linux can receive and
play the multicast flow sent from the VLC media player in the
laptop (The entire vedio recording can be availabe at [14]). It
can be seen that out prototype can efficiently support multicast
streaming vedio tasks.

VI. CONCLUSION

 We have presented a prototype for customized multicast
services in software defined network. Within plug-in
algorithms, it can provide customized multicast services. Our
simulation experiments and two practical applications showed
its feasibility and operability in the real world. Furthermore,
the platform proposed two critical modules, namely, the
receiver proxy controlling the throughput on the multicast tree
and the forwarding translation to deal with the multicast
address issue at the edge network.

 ACKNOWLEDGEMENT

 This work is supported by the National Basic Research
Program of China (973 Program) (2012CB315903), the Key
Science and Technology Innovation Team Project of Zhejiang
Province (2011R50010-05), 863 Program of China
(2012AA01A507), and the National Natural Science
Foundation of China (61379118).

REFERENCES

[1] M. Isard, M. Budiu, Y. Yu and etc., “Dryad: Distributed Data-Parallel
Programs from Sequential Building Blocks”, In Proceedings of ACM
EuroSys’07, 2007.

[2] Greg Goth, “Software-Defined Networking Cloud Shake Up More than
Packets,” IEEE Internet Computing, July/August, 2011.

[3] Lucas Bondan, et al., “Multiflow: Multicast Clean-slate with Anticipated
Route Calculation on OpenFlow Programmable Networks,” Journal of
Applied Computing Research, Vol. 2, No. 2, pp. 68-74, 2012.

[4] Daisuke Kotani, et al., “A design and implement of OpenFlow
Controller handling IP multicast with Fast Tree Switching”, In
Proceddings of IEEE/IPSJ SAINT, July, 2012.

[5] RYU [online]: https://github.com/osrg/ryu.

[6] Dan Li, Jiangwei Y., et al., “Exploring Efficient and Scalable Multicast
Routing in Furture Data Center Networks,” Transaction on Networking,
Vol. 20, No. 3, Jun. 2012.

[7] Julius R. et al., “Software-Defined Multicast for Over-the-Top and
Overlay-based Live Streaming in ISP Networks”, Netw Syst Manage,
Jul. 2014.

[8] Yang Yu, et al., “OFM: A Novel Multicast Mechanism Based on
OpenFlow”, Vol. 4, No. 9, pp. 278-286, May 2012.

[9] Cesar A. C. M. et al., “CastFlow: Clean-Slate Multicast Approach using
In-Advance Path Processing in Rrogrammable Networks”, ISCC 2012.

[10] Yukihiro N. et al., “A Management Method of IP Multicast in Overlay
Networks using OpenFlow”, In Proceeding of ACM HotSDN’12, 2012.

[11] L. Kou, G. Markowsky and L. Berman. “A fast algorithm for steiner
trees”, Acta Informatica, Vol. 15, No. 2, pp.141-145, 1981.

[12] IP backbone topology of Internet2 [Online]:
http://noc.net.internet2.edu/i2network/maps-documentation/maps.html.

[13] Minlan Yu, et al., “Rethink virtual network embedding: substrate
support for path splitting and migration,” ACM SIGCOMM Computer
Review, Vol. 38, No. 2, pp. 17-29, 2008.

[14] Video record [online]. http://youtu.be/Xz9oAgMtYl8.

